MeasuredClosureBlockState#
- class graph_tool.inference.MeasuredClosureBlockState(g, n, x, n_default=1, x_default=0, L=1, b=None, fn_params={'alpha': 1, 'beta': 1}, fp_params={'mu': 1, 'nu': 1}, aE=nan, nested=True, state_args={}, bstate=None, g_orig=None, ew=None, ex=None, **kwargs)[source]#
Bases:
LatentClosureBlockState
,UncertainBaseState
Inference state of a measured graph, using the stochastic block model with triadic closure as a prior.
- Parameters:
- g
Graph
Measured graph.
- n
EdgePropertyMap
Edge property map of type
int
, containing the total number of measurements for each edge.- x
EdgePropertyMap
Edge property map of type
int
, containing the number of positive measurements for each edge.- n_default
int
(optional, default:1
) Total number of measurements for each non-edge.
- x_default
int
(optional, default:0
) Total number of positive measurements for each non-edge.
- L
int
(optional, default:1
) Maximum number of triadic closure generations.
- b
VertexPropertyMap
(optional, default:None
) Inital partition (or hierarchical partition
nested=True
).- fn_params
dict
(optional, default:dict(alpha=1, beta=1)
) Beta distribution hyperparameters for the probability of missing edges (false negatives).
- fp_params
dict
(optional, default:dict(mu=1, nu=1)
) Beta distribution hyperparameters for the probability of spurious edges (false positives).
- aE
float
(optional, default:NaN
) Expected total number of edges used in prior. If
NaN
, a flat prior will be used instead.- nested
boolean
(optional, default:True
) If
True
, aNestedBlockState
will be used, otherwiseBlockState
.- state_args
dict
(optional, default:{}
) Arguments to be passed to
NestedBlockState
orBlockState
.- bstate
NestedBlockState
orBlockState
(optional, default:None
) If passed, this will be used to initialize the block state directly.
- g_orig
Graph
(optional, default:None
) Original graph, if
g
is used to initialize differently from a graph with no triadic closure edges.- ewlist of
EdgePropertyMap
(optional, default:None
) List of edge property maps of
g
, containing the initial weights (counts) at each triadic generation.- exlist of
EdgePropertyMap
(optional, default:None
) List of edge property maps of
g
, each containing a list of integers with the ego graph memberships of every edge, for every triadic generation.
- g
References
[peixoto-disentangling-2022]Tiago P. Peixoto, “Disentangling homophily, community structure and triadic closure in networks”, Phys. Rev. X 12, 011004 (2022), DOI: 10.1103/PhysRevX.12.011004 [sci-hub, @tor], arXiv: 2101.02510
Methods
add_edge
(u, v[, dm])Add edge \((u, v)\) with multiplicity
dm
.collect_marginal
([gs])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraphs during MCMC runs.
copy
(**kwargs)Return a copy of the state.
edge_mcmc_sweep
([beta, niter, verbose])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
entropy
([latent_edges, density, aE, sbm])Return the entropy, i.e. negative log-likelihood.
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.get_ec
([ew])Return edge property map with layer membership.
get_edge_prob
(u, v[, entropy_args, epsilon])Return conditional posterior log-probability of edge \((u,v)\).
get_edges_prob
(elist[, entropy_args, epsilon])Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.Return the current inferred graph.
Get beta distribution parameters for the posterior probability of missing edges.
Get beta distribution parameters for the posterior probability of spurious edges.
mcmc_sweep
([r, multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges.
multiflip_mcmc_sweep
(**kwargs)Alias for
mcmc_sweep()
withmultiflip=True
.remove_edge
(u, v[, dm])Remove edge \((u, v)\) with multiplicity
dm
.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.sample_graph
([sample_sbm, canonical_sbm, ...])Sample graph from inferred model.
sbm_mcmc_sweep
([multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions.
set_hparams
(alpha, beta, mu, nu)Set edge and non-edge hyperparameters.
set_state
(g, w)Set all edge multiplicities via
EdgePropertyMap
w
.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.virtual_add_edge
(u, v[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
.virtual_remove_edge
(u, v[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.- add_edge(u, v, dm=1)#
Add edge \((u, v)\) with multiplicity
dm
.
- collect_marginal(gs=None)#
Collect marginal inferred network during MCMC runs.
- Parameters:
- glist of
Graph
(optional, default:None
) Previous marginal graphs.
- glist of
- Returns:
- glist
Graph
New list of marginal graphs, each with internal
EdgePropertyMap
"eprob"
, containing the marginal probabilities for each edge, as well asVertexPropertyMap
"t"
,"m"
,"c"
, containing the average number of closures, open triads, and fraction of closed triads on each node.
- glist
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)\]where \(P(\boldsymbol A|\boldsymbol D)\) is the posterior probability given the data.
This function returns a list with the marginal graphs for every layer.
- collect_marginal_multigraph(gs=None)#
Collect marginal latent multigraphs during MCMC runs.
- Parameters:
- glist of
Graph
(optional, default:None
) Previous marginal multigraphs.
- glist of
- Returns:
- glist of
Graph
New marginal multigraphs, each with internal edge
EdgePropertyMap
"w"
and"wcount"
, containing the edge multiplicities and their respective counts.
- glist of
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
This function returns a list with the marginal graphs for every layer.
- edge_mcmc_sweep(beta=1, niter=1, verbose=False, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
- Parameters:
- beta
float
(optional, default:np.inf
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- entropy(latent_edges=True, density=False, aE=1.0, sbm=True, **kwargs)#
Return the entropy, i.e. negative log-likelihood.
Warning
The default arguments of this function are overriden by those obtained from
get_entropy_args()
. To update the defaults in a stateful way,update_entropy_args()
should be called.
- get_block_state()#
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.
- get_ec(ew=None)#
Return edge property map with layer membership.
- get_edge_prob(u, v, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of edge \((u,v)\).
- get_edges_prob(elist, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- get_p_posterior()[source]#
Get beta distribution parameters for the posterior probability of missing edges.
- get_q_posterior()[source]#
Get beta distribution parameters for the posterior probability of spurious edges.
- mcmc_sweep(r=0.5, multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges. The parameter
r
controls the probability with which edge move will be attempted, instead of partition moves. The remaining keyword parameters will be passed tomcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- multiflip_mcmc_sweep(**kwargs)#
Alias for
mcmc_sweep()
withmultiflip=True
.
- remove_edge(u, v, dm=1)#
Remove edge \((u, v)\) with multiplicity
dm
.
- reset_entropy_args()#
Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- sample_graph(sample_sbm=True, canonical_sbm=False, sample_params=True, canonical_closure=True)#
Sample graph from inferred model.
- Parameters:
- sample_sbm
boolean
(optional, default:True
) If
True
, the substrate network will be sampled anew from the SBM parameters. Otherwise, it will be the same as the current posterior state.- canonical_sbm
boolean
(optional, default:False
) If
True
, the canonical SBM will be used, otherwise the microcanonical SBM will be used.- sample_params
bool
(optional, default:True
) If
True
, andcanonical_sbm == True
the count parameters (edges between groups and node degrees) will be sampled from their posterior distribution conditioned on the actual state. Otherwise, their maximum-likelihood values will be used.- canonical_closure
boolean
(optional, default:True
) If
True
, the canonical version of triadic clousre will be used (i.e. conditioned on a probability), otherwise the microcanonical version will be used (i.e. conditional on the count number).
- sample_sbm
- Returns:
- ulist
Graph
Sampled graph, with internal edge
EdgePropertyMap
"gen"
, containing the triadic generation of each edge.
- ulist
- sbm_mcmc_sweep(multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions. The remaining keyword parameters will be passed to
mcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- set_state(g, w)#
Set all edge multiplicities via
EdgePropertyMap
w
.
- update_entropy_args(**kwargs)#
Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.Values updated in this manner are preserved by the copying or pickling of the state.
- virtual_add_edge(u, v, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
.
- virtual_remove_edge(u, v, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.