LatentLayerBaseState#
- class graph_tool.inference.LatentLayerBaseState(entropy_args={})[source]#
Bases:
EntropyState
Base state for uncertain latent layer network inference.
Methods
collect_marginal
([gs, total])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraphs during MCMC runs.
get_ec
([ew])Return edge property map with layer membership.
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.mcmc_sweep
([r, multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges.
multiflip_mcmc_sweep
(**kwargs)Alias for
mcmc_sweep()
withmultiflip=True
.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.- collect_marginal(gs=None, total=False)[source]#
Collect marginal inferred network during MCMC runs.
- Parameters:
- glist of
Graph
(optional, default:None
) Previous marginal graphs.
- glist of
- Returns:
- glist
Graph
New list of marginal graphs, each with internal edge
EdgePropertyMap
"eprob"
, containing the marginal probabilities for each edge.
- glist
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)\]where \(P(\boldsymbol A|\boldsymbol D)\) is the posterior probability given the data.
This function returns a list with the marginal graphs for every layer.
- collect_marginal_multigraph(gs=None)[source]#
Collect marginal latent multigraphs during MCMC runs.
- Parameters:
- glist of
Graph
(optional, default:None
) Previous marginal multigraphs.
- glist of
- Returns:
- glist of
Graph
New marginal multigraphs, each with internal edge
EdgePropertyMap
"w"
and"wcount"
, containing the edge multiplicities and their respective counts.
- glist of
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
This function returns a list with the marginal graphs for every layer.
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- mcmc_sweep(r=0.5, multiflip=True, **kwargs)[source]#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges. The parameter
r
controls the probability with which edge move will be attempted, instead of partition moves. The remaining keyword parameters will be passed tomcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- multiflip_mcmc_sweep(**kwargs)[source]#
Alias for
mcmc_sweep()
withmultiflip=True
.