UncertainBlockState#
- class graph_tool.inference.UncertainBlockState(g, q, q_default=0.0, nested=True, state_args={}, bstate=None, self_loops=False, **kwargs)[source]#
Bases:
UncertainBaseState
Inference state of an uncertain graph, using the stochastic block model as a prior.
- Parameters:
- g
Graph
Measured graph.
- q
EdgePropertyMap
Edge probabilities in range \([0,1]\).
- q_default
float
(optional, default:0.
) Non-edge probability in range \([0,1]\).
- nested
boolean
(optional, default:True
) If
True
, aNestedBlockState
will be used, otherwiseBlockState
.- state_args
dict
(optional, default:{}
) Arguments to be passed to
NestedBlockState
orBlockState
.- bstate
NestedBlockState
orBlockState
(optional, default:None
) If passed, this will be used to initialize the block state directly.
- self_loopsbool (optional, default:
False
) If
True
, it is assumed that the uncertain graph can contain self-loops.
- g
References
[peixoto-reconstructing-2018]Tiago P. Peixoto, “Reconstructing networks with unknown and heterogeneous errors”, Phys. Rev. X 8 041011 (2018). DOI: 10.1103/PhysRevX.8.041011 [sci-hub, @tor], arXiv: 1806.07956
Methods
add_edge
(u, v[, dm])Add edge \((u, v)\) with multiplicity
dm
.collect_marginal
([g])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraph during MCMC runs.
copy
(**kwargs)Return a copy of the state.
edge_mcmc_sweep
([beta, niter, verbose])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
entropy
([latent_edges, density, aE, sbm])Return the description length, i.e. the negative log-likelihood.
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.get_edge_prob
(u, v[, entropy_args, epsilon])Return conditional posterior log-probability of edge \((u,v)\).
get_edges_prob
(elist[, entropy_args, epsilon])Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.Return the current inferred graph.
mcmc_sweep
([beta, niter, pedges, multiflip, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges.
remove_edge
(u, v[, dm])Remove edge \((u, v)\) with multiplicity
dm
.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.sbm_mcmc_sweep
([multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions.
set_state
(g, w)Set all edge multiplicities via
EdgePropertyMap
w
.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.virtual_add_edge
(u, v[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
.virtual_remove_edge
(u, v[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.- add_edge(u, v, dm=1)#
Add edge \((u, v)\) with multiplicity
dm
.
- collect_marginal(g=None)#
Collect marginal inferred network during MCMC runs.
- Parameters:
- g
Graph
(optional, default:None
) Previous marginal graph.
- g
- Returns:
- g
Graph
New marginal graph, with internal edge
EdgePropertyMap
"eprob"
, containing the marginal probabilities for each edge.
- g
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)\]where \(P(\boldsymbol A|\boldsymbol D)\) is the posterior probability given the data.
- collect_marginal_multigraph(g=None)#
Collect marginal latent multigraph during MCMC runs.
- Parameters:
- g
Graph
(optional, default:None
) Previous marginal multigraph.
- g
- Returns:
- g
Graph
New marginal graph, with internal edge
EdgePropertyMap
"w"
and"wcount"
, containing the edge multiplicities and their respective counts.
- g
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
- copy(**kwargs)#
Return a copy of the state.
- edge_mcmc_sweep(beta=1, niter=1, verbose=False, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
- Parameters:
- beta
float
(optional, default:np.inf
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- entropy(latent_edges=True, density=False, aE=1.0, sbm=True, **kwargs)#
Return the description length, i.e. the negative log-likelihood.
Warning
The default arguments of this function are overriden by those obtained from
get_entropy_args()
. To update the defaults in a stateful way,update_entropy_args()
should be called.
- get_block_state()#
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.
- get_edge_prob(u, v, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of edge \((u,v)\).
- get_edges_prob(elist, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- get_graph()#
Return the current inferred graph.
- mcmc_sweep(beta=1, niter=1, pedges=0.5, multiflip=True, edge_mcmc_args={}, sbm_mcmc_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges. The parameter
pedges
controls the probability with which edge moves will be attempted, instead of partition moves. The remaining keyword parameters will be passed tomcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- remove_edge(u, v, dm=1)#
Remove edge \((u, v)\) with multiplicity
dm
.
- reset_entropy_args()#
Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- sbm_mcmc_sweep(multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions. The remaining keyword parameters will be passed to
mcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- set_state(g, w)#
Set all edge multiplicities via
EdgePropertyMap
w
.
- update_entropy_args(**kwargs)#
Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.Values updated in this manner are preserved by the copying or pickling of the state.
- virtual_add_edge(u, v, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
.
- virtual_remove_edge(u, v, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.