BPBlockStateBase#
- class graph_tool.inference.BPBlockStateBase(*args, **kwargs)[source]#
Bases:
DynamicsBlockStateBase
,ABC
Base state for network reconstruction where the respective model can be used with belief-propagation.
Methods
add_edge
(u, v, x[, dm])Add edge \((u, v)\) with multiplicity
dm
and weightx
.bisect_t
(v[, entropy_args, bisect_args, fb, ...])Perform a bisection search to find the best bias value for node
v
.bisect_x
(u, v[, entropy_args, bisect_args, ...])Perform a bisection search to find the best weight value for edge \((u, v)\).
Clear candidate edges for MCMC.
collect_candidates
([u])Store current edges into the list of candidates for MCMC.
collect_marginal
([g, xbins, xslack, ...])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraph during MCMC runs.
copy
(**kwargs)Return a copy of the state.
edge_MI
(u, v)Return the mutual information between nodes \(u\) and \(v\), according to their time-series.
edge_TE
(u, v)Return the transfer entropy between nodes \(u\) and \(v\), according to their time-series.
edge_cov
(u, v[, toffset, pearson])Return the covariance (or Pearson correlation if
pearson == True
) between nodes \(u\) and \(v\), according to their time-series.edge_mcmc_sweep
([beta, niter, k, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
edge_multiflip_mcmc_sweep
([beta, niter, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete edge weight categories.
entropy
([latent_edges, density, aE, sbm, ...])Return the description length, i.e. the negative joint log-likelihood.
get_S
()Get negative model likelihood according to pseudo-likelihood.
get_S_bp
(**kwargs)Get negative model likelihood according to BP.
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.get_candidate_edges
([k, r, max_rk, epsilon, ...])Return the \(\lfloor\kappa N\rceil\) best edge candidates according to a stochastic second neighbor search.
get_edge_prob
(u, v, x[, entropy_args, epsilon])Return conditional posterior log-probability of edge \((u,v)\).
get_edges_prob
(elist[, entropy_args, epsilon])Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
get_elist_grad
([h, entropy_args])Get edge list gradient.
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.Return the current inferred graph.
get_node_grad
([h, entropy_args])Get node gradient.
get_params
(params)Gets the model parameters via the dictionary
params
.Return latent node values.
Return histogram of node categories.
Return latent node categories.
get_x
()Return latent edge weights.
Return histogram (i.e. counts) of edge weight categories.
Return latent edge weight categories.
mcmc_sweep
([beta, niter, k, keep_elist, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges and network partitions.
remove_edge
(u, v[, dm])Remove edge \((u, v)\) with multiplicity
dm
.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.sample_t
(v[, beta, entropy_args, ...])Sample a value for node
v
.sample_x
(u, v[, beta, entropy_args, ...])Sample a proposed weight value for edge \((u, v)\).
sbm_mcmc_sweep
([multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions.
set_params
(params)Sets the model parameters via the dictionary
params
.set_state
(g, w)Set all edge multiplicities via
EdgePropertyMap
w
.set_tdelta
(delta)Set node bias precision parameter.
set_xdelta
(delta)Set edge weight precision parameter.
swap_mcmc_sweep
([beta, niter, preplace, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to swap edge endpoints.
tdelta_mcmc_sweep
([beta, niter, step, pold, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the node categories.
theta_mcmc_sweep
([beta, niter, pold, pnew, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node parameters.
theta_multiflip_mcmc_sweep
([beta, niter, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete node value categories.
tvals_sweep
([beta, niter, min_size, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the node bias category values, based on a bisection search.
update_edge
(u, v, nx)update edge \((u, v)\) with weight
nx
.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.update_node
(v, nt)update node \((u, v)\) with value
nt
.virtual_add_edge
(u, v, x[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
and weightx
.virtual_remove_edge
(u, v[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.virtual_update_edge
(u, v, nx[, entropy_args])Return the difference in description length if edge \((u, v)\) would take a new weight
nx
.virtual_update_node
(v, nt[, entropy_args])Return the difference in description length if node
v
would take a new valuent
.xdelta_mcmc_sweep
([beta, niter, step, pold, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the edge categories.
xvals_sweep
([beta, niter, bisect_args, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the edge weight category values, based on a bisection search.
- add_edge(u, v, x, dm=1)#
Add edge \((u, v)\) with multiplicity
dm
and weightx
.
- bisect_t(v, entropy_args={}, bisect_args={}, fb=False, ret_sampler=False)#
Perform a bisection search to find the best bias value for node
v
.- Parameters:
- v
int
orVertex
Vertex to consider.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- fb
boolean
(optional, default:False
) Perform a Fibonacci (a.k.a. golden ratio) search among the current node categories, instead of a bisection search among all possible values.
- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- v
- bisect_x(u, v, entropy_args={}, bisect_args={}, fb=False, ret_sampler=False)#
Perform a bisection search to find the best weight value for edge \((u, v)\).
- Parameters:
- u
int
orVertex
Source
- v
int
orVertex
Target
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. The recognized parameters and their default values are as follows:
- maxiter
int
(default:0
) Maximum number of iterations for bisection search (
0
means unlimited).- tol
float
(default:2e-3
) Relative tolerance for bisection search.
- ftol
float
(default:100
) Absolute tolerance used to extend the search range.
- nmax_extend
int
(default:8
) Maximum number of min/max range extensions.
- min_bound
float
(default:-np.inf
) Minimum bound for bisection search.
- max_bound
float
(default:np.inf
) Maximum bound for bisection search.
- min_init
float
(default:-np.inf
) Iniital minimum bound for bisection search.
- max_init
float
(default:np.inf
) Initial maximum bound for bisection search.
- reversible
boolean
(default:True
) Perform search in a manner that is usable for a reversible Markov chain.
- maxiter
- fb
boolean
(optional, default:False
) Perform a Fibonacci (a.k.a. golden ratio) search among the current edge categories, instead of a bisection search among all possible values.
- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- u
- clear_candidates()#
Clear candidate edges for MCMC.
- collect_candidates(u=None)#
Store current edges into the list of candidates for MCMC. If
Graph
u
is provided, its edges will be added instead.
- collect_marginal(g=None, xbins=100, xslack=0.2, expand_xbins=True, tbins=100, tslack=0.2, expand_tbins=True)#
Collect marginal inferred network during MCMC runs.
- Parameters:
- g
Graph
(optional, default:None
) Previous marginal graph.
- xbins
numpy.ndarray
orint
(optional, default:100
) Bins to be used to obtain the marginal edge weight distribution. If an integer is given, it will correspond to the number of equally spaced bins spanning the range of current weight values, increased in both directions by a factor
xslack
of the total range.- xslack
float
(optional, default:.2
) Fraction of the current range of edge weight values to increase when constructing the bins.
- expand_xbins
bool
(optional, default:True
) If
True
, when a edge weight value is encountered below or above the current range of the bins, the bins are expanded in the corresponding direction by duplicating their size, using the same spacing.- tbins
numpy.ndarray
orint
(optional, default:100
) Bins to be used to obtain the marginal node bias distribution. If an integer is given, it will correspond to the number of equally spaced bins spanning the range of current bias values, increased in both directions by a factor
tslack
of the total range.- tslack
float
(optional, default:.2
) Fraction of the current range of node bias values to increase when constructing the bins.
- expand_tbins
bool
(optional, default:True
) If
True
, when a node bias value is encountered below or above the current range of the bins, the bins are expanded in the corresponding direction by duplicating their size, using the same spacing.
- g
- Returns:
- g
Graph
New marginal graph, containing the following internal properties:
Name
Key
Value type
Description
"eprob"
Edge
double
Marginal edge probabilities
"x"
Edge
double
Marginal edge weight mean
"xdev"
Edge
double
Marginal edge weight standard deviation
"t"
Vertex
double
Marginal node bias mean
"tdev"
Vertex
double
Marginal node bias standard deviation
"xbins"
Graph
Edge weight bins
"xcount"
Edge
vector<int>
Marginal edge weight counts
"tbins"
Graph
Node bias bins
"tcount"
Vertex
vector<int>
Marginal node bias counts
"count"
Graph
int
Total number of marginal samples collected
- g
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol x}{\boldsymbol 1}_{x_{ij}>0}P(\boldsymbol x|\boldsymbol D)\]where \(P(\boldsymbol x|\boldsymbol D)\) is the posterior probability of the edge weights \(\boldsymbol x\) given the data. Likewise, the marginal mean \(\left<x_{ij}\right>\) and standard deviation \(\sigma_{ij}\) for the edge weights are given by
\[\begin{split}\begin{aligned} \left<x_{ij}\right> &= \sum_{\boldsymbol x}x_{ij}P(\boldsymbol x|\boldsymbol D)\\ \sigma_{ij}^2 &= \sum_{\boldsymbol x}(x_{ij} - \left<x_{ij}\right>)^2 P(\boldsymbol x|\boldsymbol D). \end{aligned}\end{split}\]The mean and standard deviation for the node biases are entirely analogous.
- collect_marginal_multigraph(g=None)#
Collect marginal latent multigraph during MCMC runs.
- Parameters:
- g
Graph
(optional, default:None
) Previous marginal multigraph.
- g
- Returns:
- g
Graph
New marginal graph, with internal edge
EdgePropertyMap
"wcount"
, containing the edge multiplicity counts.
- g
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
- copy(**kwargs)#
Return a copy of the state.
- edge_MI(u, v)#
Return the mutual information between nodes \(u\) and \(v\), according to their time-series.
- edge_TE(u, v)#
Return the transfer entropy between nodes \(u\) and \(v\), according to their time-series.
- edge_cov(u, v, toffset=True, pearson=False)#
Return the covariance (or Pearson correlation if
pearson == True
) between nodes \(u\) and \(v\), according to their time-series.
- edge_mcmc_sweep(beta=1.0, niter=1, k=1, elist_args={}, keep_elist=False, pold=1, pnew=1, pxu=0.1, pm=1, premove=1, pself=0.1, puniform=1, pedge=1, pnearby=1, d=2, pcandidates=1, bisect_args={}, binary=False, deterministic=False, sequential=True, parallel=True, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
If
beta
isnp.inf
, the algorithm switches to a greedy heuristic based on iterated nearest-neighbor searches.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- k
int
(optional, default:1
) \(\kappa\) parameter to be passed to
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- elist_args
dict
(optional, default:{}
) Paramters to pass to call
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- keep_elist
boolean
(optional, default:False
) If
True
, the candidate edge list from last call will be re-used (if it exists).- pold
float
(optional, default:1
) Relative probability of proposing a new edge weight from existing categories.
- pnew
float
(optional, default:1
) Relative probability of proposing a new edge weight from a new categories.
- pxu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- pm
float
(optional, default:1
) Relative probability of doing edge multiplicity updates.
- premove
float
(optional, default:1
) Relative probability of removing edges.
- pself
float
(optional, default:.1
) Relative probability to search for self-loops as candidate node “pairs”.
- puniform
float
(optional, default:1
) Relative probability to search for candidate node pairs uniformly at random.
- pedge
float
(optional, default:1
) Relative probability to search for candidate node pairs among the current edges.
- pnearby
float
(optional, default:1
) Relative probability to search for candidate node pairs among the neighborhood of current nodes up to distance
d
.- d
int
(optional, default:2
) Maximum distance used to search for candidate node pairs.
- pcandidates
float
(optional, default:1
) Relative probability to search for candidate node pairs among currently stored list of candidate edges (obtained with
collect_candidates()
).- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.- binary
boolean
(optional, default:False
) If
True
, the latent graph will be assumed to be a simple graph, otherwise a multigraph.- deterministic
boolean
(optional, default:False
) If
True
, the the order of edge updates will be determinisitc, otherwise uniformly at random.- sequential
boolean
(optional, default:True
) If
True
, a sweep will visit every edge candidate once, otherwise individiual updates will be chosen at random.- parallel
boolean
(optional, default:True
) If
True
, the updates are performed in parallel, using locks on edges candidate incident on the same node.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- edge_multiflip_mcmc_sweep(beta=1.0, niter=1, pmerge=1, psplit=1, pmergesplit=1, gibbs_sweeps=5, c=0.1, bisect_args={}, accept_stats=None, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete edge weight categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- pmerge
float
(optional, default:1
) Relative probability of merging two discrete categories.
- psplit
float
(optional, default:1
) Relative probability of splitting two discrete categories.
- pmergesplit
float
(optional, default:1
) Relative probability of simultaneoulsly merging and splitting two discrete categories.
- gibbs_sweeps
int
(optional, default:5
) Number of Gibbs sweeps performed to achieve a split proposal.
- c
double
(optional, default:.1
) Probability of choosing a category uniformly at random to perform a merge, otherwise an adjacent one is chosen.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- accept_stats
dict
(optional, default:None
) If provided, the dictionary will be updated with acceptance statistics.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- entropy(latent_edges=True, density=False, aE=1, sbm=True, xdist=True, tdist=True, xdist_uniform=False, tdist_uniform=False, xl1=1, tl1=1, alpha=1, normal=False, mu=0, sigma=1, active=True, **kwargs)#
Return the description length, i.e. the negative joint log-likelihood.
Warning
The default arguments of this function are overriden by those obtained from
get_entropy_args()
. To update the defaults in a stateful way,update_entropy_args()
should be called.- Parameters:
- latent_edges
boolean
(optional, default:True
) If
True
, the adjacency term of the description length will be included.- density
boolean
(optional, default:False
) If
True
, a geometric prior for the total number of edges will be included.- aE
double
(optional, default:1
) If
density=True
, this will correspond to the expected number of edges according to the geometric prior.- sbm
boolean
(optional, default:True
) If
True
, SBM description length will be included.- xdist
boolean
(optional, default:True
) If
True
, the quantized edge weight distribution description length will be included.- xdist_uniform
boolean
(optional, default:False
) If
True
, a uniform prior for the edge weight distribution will be used.- tdist
boolean
(optional, default:True
) If
True
, the quantized node parameter distribution description length will be included.- tdist_uniform
boolean
(optional, default:False
) If
True
, a uniform prior for the node parameter distribution will be used.- xl1
float
(optional, default:1
) Specifies the \(\lambda\) parameter for \(L_1\) regularization for the edge weights if
xdist == False
, or the Laplace hyperprior for the discrete categories ifxdist == True
.- tl1
float
(optional, default:1
) Specifies the \(\lambda\) parameter for \(L_1\) regularization for the node paraemters if
tdist == False
, or the Laplace hyperprior for the discrete categories iftdist == True
.- normal
boolean
(optional, default:False
) If
True
, a normal distribution will be used for the weight priors.- mu
double
(optional, default:0
) If
normal == True
, this will be the mean of the normal distribution.- sigma
double
(optional, default:1
) If
normal == True
, this will be the standard deviation of the normal distribution.- active
boolean
(optional, default:True
) If
True
, the contribution of the active/inactive node states will be added to the description length.
- latent_edges
Notes
The “entropy” of the state is the negative log-likelihood of the generative model for the data \(\boldsymbol S\), that includes the inferred weighted adjacency matrix \(\boldsymbol{X}\), the node parameters \(\boldsymbol{\theta}\), and the SBM node partition \(\boldsymbol{b},\) given by
\[\begin{split}\begin{aligned} \Sigma(\boldsymbol{S},\boldsymbol{X},\boldsymbol{\theta}|\lambda_x,\lambda_{\theta},\Delta) = &- \ln P(\boldsymbol{S}|\boldsymbol{X},\boldsymbol{\theta})\\ &- \ln P(\boldsymbol{X}|\boldsymbol{A},\lambda_x, \Delta)\\ &- \ln P(\boldsymbol{A},\boldsymbol{b})\\ &- \ln P(\boldsymbol{\theta}, \lambda_{\theta}, \Delta). \end{aligned}\end{split}\]The term \(P(\boldsymbol{S}|\boldsymbol{X},\boldsymbol{\theta})\) is given by the particular generative model being used and \(P(\boldsymbol{A},\boldsymbol{b})\) by the SBM. The weight ditribution is given by the quantized model
\[P(\boldsymbol X|\boldsymbol A,\lambda_x,\Delta) = \frac{\prod_{k}m_{k}!\times \mathrm{e}^{-\lambda_x \sum_k |z_k|}(\mathrm{e}^{\lambda\Delta} - 1)^{K}} {E!{E-1 \choose K-1}2^{K}\max(E,1)}\]where \(\boldsymbol z\) are the \(K\) discrete weight categories, and analogously
\[P(\boldsymbol\theta|\lambda_{\theta},\Delta) =\frac{\prod_{k}n_{k}!\times \mathrm{e}^{-\lambda \sum_k |u_k|} \sinh(\lambda_{\theta}\Delta)^{K_{\theta}-\mathbb{1}_{0\in\boldsymbol u}} (1-\mathrm{e}^{-\lambda_{\theta}\Delta})^{\mathbb{1}_{0\in\boldsymbol u}}} {N!{N-1 \choose K_{\theta}-1}N},\]is the node parameter quantized distribution. For more details see [peixoto-network-2024].
References
[peixoto-network-2024]Tiago P. Peixoto, “Network reconstruction via the minimum description length principle”, arXiv: 2405.01015
[peixoto-scalable-2024]Tiago P. Peixoto, “Scalable network reconstruction in subquadratic time”, arXiv: 2401.01404
- get_block_state()#
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.
- get_candidate_edges(k=1, r=1, max_rk='k', epsilon=0.01, c_stop=False, maxiter=0, knn=False, gradient=None, h=0.002, allow_edges=False, include_edges=True, use_hint=True, nrandom=0, keep_all=False, exact=False, return_graph=False, keep_iter=False, entropy_args={}, bisect_args={}, verbose=False)#
Return the \(\lfloor\kappa N\rceil\) best edge candidates according to a stochastic second neighbor search.
- Parameters:
- k
float
(optional, default:1
) \(\kappa\) parameter.
- r
float
(optional, default:1
) Fraction of second neighbors to consider during the search.
- max_rk
float
(optional, default:"k"
) Maximum number of second-neighbors to be considered per iteration. A string value
"k"
means that this will match the number of first neighbors.- epsilon
float
(optional, default:.01
) Convergence criterion.
- c_stop
boolean
(optional, default:False
) If
True
, the clustering coefficient will be used for the convergence criterion.- maxiter
int
(optional, default:0
) Maximum number of iterations allowed (
0
means unlimited).- knn
boolean
(optional, default:False
) If
True
, the KNN graph will be returned.- gradient
boolean
(optional, default:None
) Whether to use the gradient to rank edges. If
None
, it defaults toTrue
if the number of edge categories is empty.- h
float
(optional, default:1e-8
) Step length used to compute the gradient with central finite difference.
- allow_edges
boolean
(optional, default:False
) Permit currently present edges to be included in the search.
- use_hint
boolean
(optional, default:True
) Use current edges as a hint during the search.
- nrandom
int
(optional, default:0
) Add this many random entries to the list.
- keep_all
boolean
(optional, default:False
) Keep all entries seen during the search, not only the best.
- exact
boolean
(optional, default:False
) If
True
an exact quadratic algorithm will be used.- return_graph
boolean
(optional, default:False
) If
True
the result will be returned as graph and a property map.- keep_iter
boolean
(optional, default:False
) If
True
the results contain the iteration at which an entry has been found.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.
- k
- Returns:
- elist:class:
~numpy.ndarray
of shape(E, 2)
Best entries.
- a:class:
~numpy.ndarray
Edge scores.
- elist:class:
- get_edge_prob(u, v, x, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of edge \((u,v)\).
- get_edges_prob(elist, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- get_graph()#
Return the current inferred graph.
- get_params(params)#
Gets the model parameters via the dictionary
params
.
- get_theta()#
Return latent node values.
- get_thist()#
Return histogram of node categories.
- get_tvals()#
Return latent node categories.
- get_x()#
Return latent edge weights.
- get_xhist()#
Return histogram (i.e. counts) of edge weight categories.
- get_xvals()#
Return latent edge weight categories.
- mcmc_sweep(beta=1, niter=1, k=1, keep_elist=False, edge=1, edge_swap=1, edge_multiflip=None, theta=1, theta_multiflip=1, sbm=1, xvals=1, tvals=1, verbose=False, elist_args={}, edge_mcmc_args={}, edge_swap_mcmc_args={}, edge_multiflip_mcmc_args={}, xvals_mcmc_args={}, theta_mcmc_args={}, theta_multiflip_mcmc_args={}, tvals_mcmc_args={}, sbm_mcmc_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges and network partitions.
If
beta
isnp.inf
, the algorithm switches to a greedy heuristic based on iterated nearest-neighbor searches.- Parameters:
- beta
float
(optional, default:1
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- k
int
(optional, default:1
) \(\kappa\) parameter to be passed to
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- elist_args
dict
(optional, default:{}
) Paramters to pass to call
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- keep_elist
boolean
(optional, default:False
) If
True
, the candidate edge list from last call will be re-used (if it exists).- edge
float
(optional, default:1
) Probability with which
edge_mcmc_sweep()
will be called.- edge_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
edge_mcmc_sweep()
.- edge_swap
float
(optional, default:1.
) Probability with which
swap_mcmc_sweep()
will be called.- edge_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
swap_mcmc_sweep()
.- edge_multiflip
float
(optional, default:1 if np.isinf(beta) else .1
) Probability with which
edge_multiflip_mcmc_sweep()
will be called.- edge_multiflip_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
edge_multiflip_mcmc_sweep()
.- theta
float
(optional, default:1.
) Probability with which
theta_mcmc_sweep()
will be called.- theta_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
theta_mcmc_sweep()
.- theta_multiflip
float
(optional, default:1.
) Probability with which
theta_multiflip_mcmc_sweep()
will be called.- theta_multiflip_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
theta_multiflip_mcmc_sweep()
.- sbm
float
(optional, default:1.
) Probability with which
sbm_mcmc_sweep()
will be called.- sbm_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
sbm_mcmc_sweep()
.- xvals
float
(optional, default:1.
) Probability with which
xvals_sweep()
will be called.- xvals_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
xvals_sweep()
.- tvals
float
(optional, default:1.
) Probability with which
tvals_sweep()
will be called.- tvals_mcmc_args
dict
(optional, default:{}
) Paramters to pass to call
tvals_sweep()
.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- **kwargs
dict
(optional, default:{}
) Remaining keyword parameters will be passed to all individual MCMC functions.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- remove_edge(u, v, dm=1)#
Remove edge \((u, v)\) with multiplicity
dm
.
- reset_entropy_args()#
Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- sample_t(v, beta=1, entropy_args={}, bisect_args={}, fb=False, ret_sampler=False)#
Sample a value for node
v
.- Parameters:
- v
int
orVertex
Node to be considered.
- beta
float
(optional, default:1
) Inverse temperature.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- fb
bool
(optional, default:False
) If
True
, the search will be confined to a Fibonacci search over the discrete values given byget_xvals()
.- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- v
- sample_x(u, v, beta=1, entropy_args={}, bisect_args={}, fb=False, ret_sampler=False)#
Sample a proposed weight value for edge \((u, v)\).
- Parameters:
- u
int
orVertex
Source node.
- v
int
orVertex
Target node.
- beta
float
(optional, default:1
) Inverse temperature.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- fb
bool
(optional, default:False
) If
True
, the search will be confined to a Fibonacci search over the discrete values given byget_xvals()
.- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- u
- sbm_mcmc_sweep(multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions. The remaining keyword parameters will be passed to
mcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- set_params(params)#
Sets the model parameters via the dictionary
params
.
- set_state(g, w)#
Set all edge multiplicities via
EdgePropertyMap
w
.
- set_tdelta(delta)#
Set node bias precision parameter.
- set_xdelta(delta)#
Set edge weight precision parameter.
- swap_mcmc_sweep(beta=1, niter=1, preplace=1, pswap=1, pself=0.1, puniform=1, pedge=1, pnearby=1, d=2, pcandidates=1, parallel=True, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to swap edge endpoints.
- Parameters:
- beta
float
(optional, default:np.inf
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- preplace
float
(optional, default:1
) Relative probability of swaping the weights between an edge and another node pair incident on one of the same two endpoints.
- pswap
float
(optional, default:1
) Relative probability of swapping the endpoints of two selected edges or node pairs.
- pself
float
(optional, default:.1
) Relative probability to search for self-loops as candidate node “pairs”.
- puniform
float
(optional, default:1
) Relative probability to search for candidate node pairs uniformly at random.
- pedge
float
(optional, default:1
) Relative probability to search for candidate node pairs among the current edges.
- pnearby
float
(optional, default:1
) Relative probability to search for candidate node pairs among the neighborhood of current nodes up to distance
d
.- d
int
(optional, default:2
) Maximum distance used to search for candidate node pairs.
- pcandidates
float
(optional, default:1
) Relative probability to search for candidate node pairs among currently stored list of candidate edges (obtained with
collect_candidates()
).- parallel
boolean
(optional, default:True
) If
True
, the updates are performed in parallel, using locks on edges candidate incident on the same node.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- tdelta_mcmc_sweep(beta=1.0, niter=1, step=10, pold=0.5, ptu=0.1, intra_sweeps=10, verbose=False, entropy_args={}, bisect_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the node categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- step
float
(optional, default:10
) Multiplicative move step size.
- pold
float
(optional, default:1
) Relative probability of proposing a new edge weight from existing categories.
- ptu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- intra_sweeps
int
(optional, default:10
) Number of Metropolis-Hastings sweeps performed to achieve a staging proposal.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- theta_mcmc_sweep(beta=1.0, niter=1, pold=1, pnew=1, ptu=0.1, bisect_args={}, deterministic=False, sequential=True, parallel=True, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node parameters.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- pold
float
(optional, default:1
) Relative probability of proposing a new node value from existing categories.
- pnew
float
(optional, default:1
) Relative probability of proposing a new node value from a new categories.
- ptu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.- deterministic
boolean
(optional, default:False
) If
True
, the the order of node updates will be determinisitc, otherwise uniformly at random.- sequential
boolean
(optional, default:True
) If
True
, a sweep will visit every node once, otherwise individiual updates will be chosen at random.- parallel
boolean
(optional, default:True
) If
True
, the updates are performed in parallel.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- theta_multiflip_mcmc_sweep(beta=1.0, niter=1, pmerge=1, psplit=1, pmergesplit=1, gibbs_sweeps=5, c=0.1, bisect_args={}, accept_stats=None, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete node value categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- pmerge
float
(optional, default:1
) Relative probability of merging two discrete categories.
- psplit
float
(optional, default:1
) Relative probability of splitting two discrete categories.
- pmergesplit
float
(optional, default:1
) Relative probability of simultaneoulsly merging and splitting two discrete categories.
- gibbs_sweeps
int
(optional, default:5
) Number of Gibbs sweeps performed to achieve a split proposal.
- c
double
(optional, default:.1
) Probability of choosing a category uniformly at random to perform a merge, otherwise an adjacent one is chosen.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- accept_stats
dict
(optional, default:None
) If provided, the dictionary will be updated with acceptance statistics.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- tvals_sweep(beta=1.0, niter=100, min_size=1, bisect_args={}, entropy_args={})#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the node bias category values, based on a bisection search.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:100
) Maximum number of categories to update.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample node biases. See
bisect_x()
) for documentation.- min_size
int
(optional, default:1
) Minimum size of node categories that will be updated.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- update_edge(u, v, nx)#
update edge \((u, v)\) with weight
nx
.
- update_entropy_args(**kwargs)#
Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.Values updated in this manner are preserved by the copying or pickling of the state.
- update_node(v, nt)#
update node \((u, v)\) with value
nt
.
- virtual_add_edge(u, v, x, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
and weightx
.
- virtual_remove_edge(u, v, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.
- virtual_update_edge(u, v, nx, entropy_args={})#
Return the difference in description length if edge \((u, v)\) would take a new weight
nx
.
- virtual_update_node(v, nt, entropy_args={})#
Return the difference in description length if node
v
would take a new valuent
.
- xdelta_mcmc_sweep(beta=1.0, niter=1, step=10, pold=0.5, pxu=0.1, intra_sweeps=10, verbose=False, entropy_args={}, bisect_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the edge categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- step
float
(optional, default:10
) Multiplicative move step size.
- pold
float
(optional, default:1
) Relative probability of proposing a new edge weight from existing categories.
- pxu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- intra_sweeps
int
(optional, default:10
) Number of Metropolis-Hastings sweeps performed to achieve a staging proposal.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- xvals_sweep(beta=1.0, niter=100, bisect_args={}, min_size=1, entropy_args={}, verbose=False)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the edge weight category values, based on a bisection search.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:100
) Maximum number of categories to update.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.- min_size
int
(optional, default:1
) Minimum size of edge categories that will be updated.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS