dijkstra_iterator#
- graph_tool.search.dijkstra_iterator(g, weight, source=None, dist_map=None, combine=None, compare=None, zero=0, infinity=inf, array=False)[source]#
Return an iterator of the edges corresponding to a Dijkstra traversal of the graph.
- Parameters:
- g
Graph
Graph to be used.
- weight
EdgePropertyMap
Edge property map with weight values.
- source
Vertex
(optional, default:None
) Source vertex. If unspecified, all vertices will be traversed, by iterating over starting vertices according to their index in increasing order.
- dist_map
VertexPropertyMap
(optional, default:None
) A vertex property map where the distances from the source will be stored.
- combinebinary function (optional, default:
lambda a, b: a + b
) This function is used to combine distances to compute the distance of a path.
- comparebinary function (optional, default:
lambda a, b: a < b
) This function is use to compare distances to determine which vertex is closer to the source vertex.
- zeroint or float (optional, default:
0
) Value assumed to correspond to a distance of zero by the combine and compare functions.
- infinityint or float (optional, default:
numpy.inf
) Value assumed to correspond to a distance of infinity by the combine and compare functions.
- array
bool
(optional, default:False
) If
True
, anumpy.ndarray
with the edge endpoints be returned instead.
- g
- Returns:
- dfs_iteratorIterator or
numpy.ndarray
An iterator over the edges in Dijkstra order. If
array == True
, this will be anumpy.ndarray
instead, of shape(E,2)
, containing the edge endpoints.
- dfs_iteratorIterator or
See also
bfs_iterator
Breadth-first search
dfs_iterator
Depth-first search
astar_iterator
\(A^*\) heuristic search algorithm
Notes
See
dijkstra_search()
for an explanation of the algorithm.The time complexity is \(O(1)\) to create the generator and \(O(E + V\log V)\) to traverse it completely.
References
[dijkstra]E. Dijkstra, “A note on two problems in connexion with graphs”, Numerische Mathematik, 1:269-271, 1959.
[dijkstra-bgl]http://www.boost.org/doc/libs/release/libs/graph/doc/dijkstra_shortest_paths_no_color_map.html
[dijkstra-wikipedia]Examples
>>> g = gt.load_graph("search_example.xml") >>> name = g.vp["name"] >>> weight = g.ep["weight"] >>> for e in gt.dijkstra_iterator(g, weight, g.vertex(0)): ... print(name[e.source()], "->", name[e.target()]) Bob -> Eve Bob -> Chuck Bob -> Carlos Bob -> Isaac Eve -> Imothep Eve -> Carol Carlos -> Alice Alice -> Oscar Alice -> Dave