IsingBlockStateBase#
- class graph_tool.inference.IsingBlockStateBase(s, g=None, has_zero=False, **kwargs)[source]#
Bases:
ABC
Base state for network reconstruction based on the Ising model, using the stochastic block model as a prior.
This class is not supposed to be instantiated directly.
Instead one of its specialized subclasses must be used, which have the same signature:
IsingGlauberBlockState
,PseudoIsingBlockState
,CIsingGlauberBlockState
,PseudoCIsingBlockState
.- Parameters:
- s
ndarray
of shape(N,M)
orlist
ofVertexPropertyMap
orVertexPropertyMap
Time series or independent samples used for reconstruction.
If the type is
ndarray
, it should correspond to a(N,M)
data matrix withM
samples for allN
nodes.The values must correspond to Ising states:
-1
or+1
If the parameter
g
is provided, this can be optionally a list of ofVertexPropertyMap
objects, where each entry in this list must be aVertexPropertyMap
with typevector<int>
. If a single property map is given, then a single time series is assumed.If the parameter
t
below is given, each property map value for a given node should contain only the states for the same points in time given by that parameter.- g
Graph
(optional, default:None
) Initial graph state. If not provided, an empty graph will be assumed.
- has_zerobool (optional, default:
False
) If
True
, the three-state “Ising” model with values{-1,0,1}
is used.- **kwargs(optional)
Remaining parameters to be passed to
DynamicsBlockStateBase
- s
References
[ising-model][peixoto-network-2019]Tiago P. Peixoto, “Network reconstruction and community detection from dynamics”, Phys. Rev. Lett. 123 128301 (2019), DOI: 10.1103/PhysRevLett.123.128301 [sci-hub, @tor], arXiv: 1903.10833
[peixoto-network-2024]Tiago P. Peixoto, “Network reconstruction via the minimum description length principle”, arXiv: 2405.01015
[peixoto-scalable-2024]Tiago P. Peixoto, “Scalable network reconstruction in subquadratic time”, arXiv: 2401.01404
Methods
get_dyn_state
([s])Return an
IsingGlauberState
instance corresponding to the inferred model, optionally with initial state given bys
.- get_dyn_state(s=None)[source]#
Return an
IsingGlauberState
instance corresponding to the inferred model, optionally with initial state given bys
.