PPBlockState#
- class graph_tool.inference.PPBlockState(g, b=None, entropy_args={})[source]#
Bases:
MCMCState
,MultiflipMCMCState
,MultilevelMCMCState
,GibbsMCMCState
,DrawBlockState
Obtain the partition of a network according to the Bayesian planted partition model.
- Parameters:
- g
Graph
Graph to be modelled.
- b
PropertyMap
(optional, default:None
) Initial partition. If not supplied, a partition into a single group will be used.
- entropy_args: ``dict`` (optional, default: ``{}``)
Override default arguments for
entropy()
method and releated operations.
- g
References
[lizhi-statistical-2020]Lizhi Zhang, Tiago P. Peixoto, “Statistical inference of assortative community structures”, Phys. Rev. Research 2 043271 (2020), DOI: 10.1103/PhysRevResearch.2.043271 [sci-hub, @tor], arXiv: 2006.14493
Methods
copy
([g, b])Copies the state.
draw
(**kwargs)Convenience wrapper to
graph_draw()
that draws the state of the graph as colors on the vertices and edges.entropy
([uniform, degree_dl_kind])Return the model entropy (negative log-likelihood).
get_B
()Returns the total number of blocks.
get_Be
()Returns the effective number of blocks, defined as \(e^{H}\), with \(H=-\sum_r\frac{n_r}{N}\ln \frac{n_r}{N}\), where \(n_r\) is the number of nodes in group r.
Returns the property map which contains the block labels for each vertex.
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.Alias to
get_B()
.Alias to
get_blocks()
.gibbs_sweep
([beta, niter, entropy_args, ...])Perform
niter
sweeps of a rejection-free Gibbs MCMC to sample network partitions.mcmc_sweep
([beta, c, d, niter, ...])Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample network partitions.move_vertex
(v, s)Move vertex
v
to blocks
.multiflip_mcmc_sweep
([beta, c, psingle, ...])Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC with multiple simultaneous moves (i.e. merges and splits) to sample network partitions.multilevel_mcmc_sweep
([niter, beta, c, d, ...])Perform
niter
sweeps of a multilevel agglomerative acceptance-rejection pseudo-MCMC (i.e. detailed balance is not preserved) to sample network partitions, that uses a bisection search on the number of groups, together with group merges and singe-node moves.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.virtual_vertex_move
(v, s, **kwargs)Computes the entropy difference if vertex
v
is moved to blocks
.- copy(g=None, b=None)[source]#
Copies the state. The parameters override the state properties, and have the same meaning as in the constructor.
- draw(**kwargs)#
Convenience wrapper to
graph_draw()
that draws the state of the graph as colors on the vertices and edges.
- entropy(uniform=False, degree_dl_kind='distributed')#
Return the model entropy (negative log-likelihood).
Warning
The default arguments of this function are overriden by those obtained from
get_entropy_args()
. To update the defaults in a stateful way,update_entropy_args()
should be called.- Parameters:
- uniform
bool
(optional, default:False
) If
True
, the uniform planted partition model is used, otherwise a non-uniform version is used.- degree_dl_kind
str
(optional, default:"distributed"
) This specifies the prior used for the degree sequence. It must be one of:
"uniform"
or"distributed"
(default).
- uniform
Notes
The “entropy” of the state is the negative log-likelihood of the microcanonical SBM, that includes the generated graph \(\boldsymbol{A}\) and the model parameters \(e_{\text{in}}\), \(e_{\text{out}}\), \(\boldsymbol{k}\) and \(\boldsymbol{b}\),
\[\begin{split}\Sigma &= - \ln P(\boldsymbol{A},e_{\text{in}},e_{\text{out}},\boldsymbol{k},\boldsymbol{b}) \\ &= - \ln P(\boldsymbol{A}|e_{\text{in}},e_{\text{out}},\boldsymbol{k},\boldsymbol{b}) - \ln P(e_{\text{in}},e_{\text{out}},\boldsymbol{k},\boldsymbol{b}).\end{split}\]This value is also called the description length of the data, and it corresponds to the amount of information required to describe it (in nats).
For the uniform version of the model, the likelihood is
\[P(\boldsymbol{A}|\boldsymbol{k},\boldsymbol{b}) = \frac{e_{\text{in}}!e_{\text{out}}!} {\left(\frac{B}{2}\right)^{e_{\text{in}}}{B\choose 2}^{e_{\text{out}}}(E+1)^{1-\delta_{B,1}}\prod_re_r!}\times \frac{\prod_ik_i!}{\prod_{i<j}A_{ij}!\prod_i A_{ii}!!}.\]where \(e_{\text{in}}\) and \(e_{\text{out}}\) are the number of edges inside and outside communities, respectively, and \(e_r\) is the sum of degrees in group \(r\).
For the non-uniform model we have instead:
\[P(\boldsymbol{A}|\boldsymbol{k},\boldsymbol{b}) = \frac{e_{\text{out}}!\prod_re_{rr}!!} {{B\choose 2}^{e_{\text{out}}}(E+1)^{1-\delta_{B,1}}\prod_re_r!}\times{B + e_{\text{in}} - 1 \choose e_{\text{in}}}^{-1}\times \frac{\prod_ik_i!}{\prod_{i<j}A_{ij}!\prod_i A_{ii}!!}.\]Here there are two options for the prior on the degrees:
degree_dl_kind == "uniform"
\[P(\boldsymbol{k}|\boldsymbol{e},\boldsymbol{b}) = \prod_r\left(\!\!{n_r\choose e_r}\!\!\right)^{-1}.\]This corresponds to a noninformative prior, where the degrees are sampled from a uniform distribution.
degree_dl_kind == "distributed"
(default)\[P(\boldsymbol{k}|\boldsymbol{e},\boldsymbol{b}) = \prod_r\frac{\prod_k\eta_k^r!}{n_r!} \prod_r q(e_r, n_r)^{-1}\]with \(\eta_k^r\) being the number of nodes with degree \(k\) in group \(r\), and \(q(n,m)\) being the number of partitions of integer \(n\) into at most \(m\) parts.
This corresponds to a prior for the degree sequence conditioned on the degree frequencies, which are themselves sampled from a uniform hyperprior. This option should be preferred in most cases.
For the partition prior \(P(\boldsymbol{b})\) please refer to
entropy()
.References
[lizhi-statistical-2020]Lizhi Zhang, Tiago P. Peixoto, “Statistical inference of assortative community structures”, Phys. Rev. Research 2 043271 (2020), DOI: 10.1103/PhysRevResearch.2.043271 [sci-hub, @tor], arXiv: 2006.14493
- get_Be()[source]#
Returns the effective number of blocks, defined as \(e^{H}\), with \(H=-\sum_r\frac{n_r}{N}\ln \frac{n_r}{N}\), where \(n_r\) is the number of nodes in group r.
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- get_state()[source]#
Alias to
get_blocks()
.
- gibbs_sweep(beta=1.0, niter=1, entropy_args={}, allow_new_group=True, sequential=True, deterministic=False, vertices=None, verbose=False, **kwargs)#
Perform
niter
sweeps of a rejection-free Gibbs MCMC to sample network partitions.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature.
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- allow_new_group
bool
(optional, default:True
) Allow the number of groups to increase and decrease.
- sequential
bool
(optional, default:True
) If
sequential == True
each vertex move attempt is made sequentially, where vertices are visited in random order. Otherwise the moves are attempted by sampling vertices randomly, so that the same vertex can be moved more than once, before other vertices had the chance to move.- deterministic
bool
(optional, default:False
) If
sequential == True
anddeterministic == True
the vertices will be visited in deterministic order.- vertices
list
of ints (optional, default:None
) If provided, this should be a list of vertices which will be moved. Otherwise, all vertices will.
- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E\times B)\) complexity, where \(B\) is the number of groups, and \(E\) is the number of edges.
- mcmc_sweep(beta=1.0, c=0.5, d=0.01, niter=1, entropy_args={}, allow_vacate=True, sequential=True, deterministic=False, vertices=None, verbose=False, **kwargs)#
Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample network partitions.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature.
- c
float
(optional, default:.5
) Sampling parameter
c
for move proposals: For \(c\to 0\) the blocks are sampled according to the local neighborhood of a given node and their block connections; for \(c\to\infty\) the blocks are sampled randomly. Note that only for \(c > 0\) the MCMC is guaranteed to be ergodic.- d
float
(optional, default:.01
) Probability of selecting a new (i.e. empty) group for a given move.
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- allow_vacate
bool
(optional, default:True
) Allow groups to be vacated.
- sequential
bool
(optional, default:True
) If
sequential == True
each vertex move attempt is made sequentially, where vertices are visited in random order. Otherwise the moves are attempted by sampling vertices randomly, so that the same vertex can be moved more than once, before other vertices had the chance to move.- deterministic
bool
(optional, default:False
) If
sequential == True
anddeterministic == True
the vertices will be visited in deterministic order.- vertices
list
of ints (optional, default:None
) If provided, this should be a list of vertices which will be moved. Otherwise, all vertices will.
- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E)\) complexity, where \(E\) is the number of edges (independent of the number of groups).
References
[peixoto-efficient-2014]Tiago P. Peixoto, “Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models”, Phys. Rev. E 89, 012804 (2014), DOI: 10.1103/PhysRevE.89.012804 [sci-hub, @tor], arXiv: 1310.4378
- multiflip_mcmc_sweep(beta=1.0, c=0.5, psingle=None, psplit=1, pmerge=1, pmergesplit=1, pmovelabel=0, d=0.01, gibbs_sweeps=10, niter=1, entropy_args={}, accept_stats=None, verbose=False, **kwargs)#
Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC with multiple simultaneous moves (i.e. merges and splits) to sample network partitions.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature.
- c
float
(optional, default:.5
) Sampling parameter
c
for move proposals: For \(c\to 0\) the blocks are sampled according to the local neighborhood of a given node and their block connections; for \(c\to\infty\) the blocks are sampled randomly. Note that only for \(c > 0\) the MCMC is guaranteed to be ergodic.- psingle
float
(optional, default:None
) Relative probability of proposing a single node move. If
None
, it will be selected as the number of nodes in the graph.- psplit
float
(optional, default:1
) Relative probability of proposing a group split.
- pmergesplit
float
(optional, default:1
) Relative probability of proposing a marge-split move.
- pmovelabel
float
(optional, default:0
) Relative probability of proposing a group label move.
- d
float
(optional, default:1
) Probability of selecting a new (i.e. empty) group for a given single-node move.
- gibbs_sweeps
int
(optional, default:10
) Number of sweeps of Gibbs sampling to be performed (i.e. each node is attempted once per sweep) to refine a split proposal.
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node, on average.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- accept_stats
dict
(optional, default:None
) If provided, this dictionary will be updated with the proposal and acceptance counts for each kind of move.
- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E)\) complexity, where \(E\) is the number of edges (independent of the number of groups).
References
[peixoto-merge-split-2020]Tiago P. Peixoto, “Merge-split Markov chain Monte Carlo for community detection”, Phys. Rev. E 102, 012305 (2020), DOI: 10.1103/PhysRevE.102.012305 [sci-hub, @tor], arXiv: 2003.07070
- multilevel_mcmc_sweep(niter=1, beta=inf, c=0.5, d=0.01, r=0.9, random_bisect=True, merge_sweeps=10, mh_sweeps=10, init_r=0.99, init_min_iter=5, init_beta=1.0, gibbs=False, B_min=1, B_max=18446744073709551615, b_min=None, b_max=None, M=None, cache_states=True, force_accept=False, parallel=False, entropy_args={}, verbose=False, **kwargs)#
Perform
niter
sweeps of a multilevel agglomerative acceptance-rejection pseudo-MCMC (i.e. detailed balance is not preserved) to sample network partitions, that uses a bisection search on the number of groups, together with group merges and singe-node moves.- Parameters:
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node, on average.
- beta
float
(optional, default:numpy.inf
) Inverse temperature.
- c
float
(optional, default:.5
) Sampling parameter
c
for move proposals: For \(c\to 0\) the blocks are sampled according to the local neighborhood of a given node and their block connections; for \(c\to\infty\) the blocks are sampled randomly. Note that only for \(c > 0\) the MCMC is guaranteed to be ergodic.- d
float
(optional, default:.01
) Probability of selecting a new (i.e. empty) group for a given single-node move.
- r
float
(optional, default:0.9
) Group shrink ratio. The number of groups is reduced by this fraction at each merge sweep.
- random_bisect
bool
(optional, default:True
) If
True
, bisections are done at randomly chosen intervals. Otherwise a Fibonacci sequence is used.- merge_sweeps
int
(optional, default:10
) Number of sweeps spent to find good merge proposals.
- mh_sweeps
int
(optional, default:10
) Number of single-node Metropolis-Hastings sweeps between merge splits.
- init_r
double
(optional, default:0.99
) Stopping criterion for the intialization phase, after each node is put in their own group, to set the initial upper bound of the bisection search. A number of single-node Metropolis-Hastings sweeps is done until the number of groups is shrunk by a factor that is larger than this parameter.
- init_min_iter
int
(optional, default:5
) Minimum number of iterations at the intialization phase.
- init_beta
float
(optional, default:1.
) Inverse temperature to be used for the very first sweep of the initialization phase.
- gibbs
bool
(optional, default:False
) If
True
, the single node moves use (slower) Gibbs sampling, rather than Metropolis-Hastings.- B_min
int
(optional, default:1
) Minimum number of groups to be considered in the search.
- b_min
VertexPropertyMap
(optional, default:None
) If provided, this will be used for the partition corresponding to
B_min
.- B_max
int
(optional, default:1
) Maximum number of groups to be considered in the search.
- b_max
VertexPropertyMap
(optional, default:None
) If provided, this will be used for the partition corresponding to
B_max
.- M
int
(optional, default:None
) Maximum number of groups to select for the multilevel move. If
None
is provided, then all groups are always elected.- cache_states
bool
(optional, default:True
) If
True
, intermediary states will be cached during the bisection search.- force_accept
bool
(optional, default:False
) If
True
, new state will be accepted even if it does not improve the objective function.- parallel
bool
(optional, default:False
) If
True
, the algorithm will run in parallel (if enabled during compilation).- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- niter
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E\ln^2 N)\) complexity, where \(E\) is the number of edges and \(N\) is the number of nodes (independently of the number of groups).
References
[peixoto-efficient-2014]Tiago P. Peixoto, “Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models”, Phys. Rev. E 89, 012804 (2014), DOI: 10.1103/PhysRevE.89.012804 [sci-hub, @tor], arXiv: 1310.4378
- reset_entropy_args()#
Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.