EpidemicsBlockState#
- class graph_tool.inference.EpidemicsBlockState(s, g=None, exposed=False, theta=-1, x_range=(-inf, 1e-08), theta_range=(-inf, 1e-08), **kwargs)[source]#
Bases:
DynamicsBlockStateBase
Inference state for network reconstruction based on epidemic dynamics, using the stochastic block model as a prior.
- Parameters:
- s
ndarray
of shape(N,M)
orlist
ofVertexPropertyMap
orVertexPropertyMap
Time series used for reconstruction.
If the type is
ndarray
, it should correspond to a(N,M)
data matrix withM
samples for allN
nodes.A value of
1
means infected and0
susceptible. Other values are allowed (e.g. for recovered), but their actual value is unimportant for reconstruction.If the parameter
g
is provided, this can be optionally a list of ofVertexPropertyMap
objects, where each entry in this list must be aVertexPropertyMap
with typevector<int>
. If a single property map is given, then a single time series is assumed.If the parameter
t
below is given, each property map value for a given node should contain only the states for the same points in time given by that parameter.- g
Graph
(optional, default:None
) Initial graph state. If not provided, an empty graph will be assumed.
- exposed
boolean
(optional, default:False
) If
True
, the data is supposed to come from a SEI, SEIR, etc. model, where a susceptible node (valued0
) first transits to an exposed state (valued-1
) upon transmission, before transiting to the infective state (valued1
).- **kwargs(optional)
Remaining parameters to be passed to
DynamicsBlockStateBase
- s
References
[peixoto-network-2019]Tiago P. Peixoto, “Network reconstruction and community detection from dynamics”, Phys. Rev. Lett. 123 128301 (2019), DOI: 10.1103/PhysRevLett.123.128301 [sci-hub, @tor], arXiv: 1903.10833
[peixoto-network-2024]Tiago P. Peixoto, “Network reconstruction via the minimum description length principle”, arXiv: 2405.01015
[peixoto-scalable-2024]Tiago P. Peixoto, “Scalable network reconstruction in subquadratic time”, arXiv: 2401.01404
Methods
add_edge
(u, v, x[, dm])Add edge \((u, v)\) with multiplicity
dm
and weightx
.bisect_t
(v[, entropy_args, bisect_args, fb, ...])Perform a bisection search to find the best bias value for node
v
.bisect_x
(u, v[, entropy_args, bisect_args, ...])Perform a bisection search to find the best weight value for edge \((u, v)\).
Clear candidate edges for MCMC.
collect_candidates
([u])Store current edges into the list of candidates for MCMC.
collect_marginal
([g])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraph during MCMC runs.
copy
(**kwargs)Return a copy of the state.
edge_MI
(u, v)Return the mutual information between nodes \(u\) and \(v\), according to their time-series.
edge_TE
(u, v)Return the transfer entropy between nodes \(u\) and \(v\), according to their time-series.
edge_cov
(u, v[, toffset, pearson])Return the covariance (or Pearson correlation if
pearson == True
) between nodes \(u\) and \(v\), according to their time-series.edge_mcmc_sweep
([beta, niter, k, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
edge_multiflip_mcmc_sweep
([beta, niter, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete edge weight categories.
entropy
([latent_edges, density, aE, sbm, ...])Return the description length, i.e. the negative joint log-likelihood.
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.get_candidate_edges
([k, r, max_rk, epsilon, ...])Return the \(\lfloor\kappa N\rceil\) best edge candidates according to a stochastic second neighbor search.
get_edge_prob
(u, v, x[, entropy_args, epsilon])Return conditional posterior log-probability of edge \((u,v)\).
get_edges_prob
(elist[, entropy_args, epsilon])Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.Return the current inferred graph.
get_params
(params)Gets the model parameters via the dictionary
params
.get_t
()Return the latent edge transmission probabilities.
Return latent node values.
Return histogram of node categories.
Return latent node categories.
get_x
()Return latent edge weights.
Return histogram (i.e. counts) of edge weight categories.
Return latent edge weight categories.
mcmc_sweep
([beta, niter, k, keep_elist, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges and network partitions.
remove_edge
(u, v[, dm])Remove edge \((u, v)\) with multiplicity
dm
.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.sample_t
(v[, beta, entropy_args, bisect_args])Sample a value for node
v
.sample_x
(u, v[, beta, entropy_args, ...])Sample a proposed weight value for edge \((u, v)\).
sbm_mcmc_sweep
([multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions.
set_params
(params)Sets the model parameters via the dictionary
params
.set_state
(g, w)Set all edge multiplicities via
EdgePropertyMap
w
.set_tdelta
(delta)Set node bias precision parameter.
set_xdelta
(delta)Set edge weight precision parameter.
swap_mcmc_sweep
([beta, niter, preplace, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to swap edge endpoints.
tdelta_mcmc_sweep
([beta, niter, step, pold, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the node categories.
theta_mcmc_sweep
([beta, niter, pold, pnew, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node parameters.
theta_multiflip_mcmc_sweep
([beta, niter, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete node value categories.
tvals_sweep
([beta, niter, min_size, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the node bias category values, based on a bisection search.
update_edge
(u, v, nx)update edge \((u, v)\) with weight
nx
.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.update_node
(v, nt)update node \((u, v)\) with value
nt
.virtual_add_edge
(u, v, x[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
and weightx
.virtual_remove_edge
(u, v[, dm, entropy_args])Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.virtual_update_edge
(u, v, nx[, entropy_args])Return the difference in description length if edge \((u, v)\) would take a new weight
nx
.virtual_update_node
(v, nt[, entropy_args])Return the difference in description length if node
v
would take a new valuent
.xdelta_mcmc_sweep
([beta, niter, step, pold, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the edge categories.
xvals_sweep
([beta, niter, bisect_args, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the edge weight category values, based on a bisection search.
- add_edge(u, v, x, dm=1)#
Add edge \((u, v)\) with multiplicity
dm
and weightx
.
- bisect_t(v, entropy_args={}, bisect_args={}, fb=False, ret_sampler=False)#
Perform a bisection search to find the best bias value for node
v
.- Parameters:
- v
int
orVertex
Vertex to consider.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- fb
boolean
(optional, default:False
) Perform a Fibonacci (a.k.a. golden ratio) search among the current node categories, instead of a bisection search among all possible values.
- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- v
- bisect_x(u, v, entropy_args={}, bisect_args={}, fb=False, ret_sampler=False)#
Perform a bisection search to find the best weight value for edge \((u, v)\).
- Parameters:
- u
int
orVertex
Source
- v
int
orVertex
Target
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. The recognized parameters and their default values are as follows:
- maxiter
int
(default:0
) Maximum number of iterations for bisection search (
0
means unlimited).- tol
float
(default:2e-3
) Relative tolerance for bisection search.
- ftol
float
(default:100
) Absolute tolerance used to extend the search range.
- nmax_extend
int
(default:8
) Maximum number of min/max range extensions.
- min_bound
float
(default:-np.inf
) Minimum bound for bisection search.
- max_bound
float
(default:np.inf
) Maximum bound for bisection search.
- min_init
float
(default:-np.inf
) Iniital minimum bound for bisection search.
- max_init
float
(default:np.inf
) Initial maximum bound for bisection search.
- reversible
boolean
(default:True
) Perform search in a manner that is usable for a reversible Markov chain.
- maxiter
- fb
boolean
(optional, default:False
) Perform a Fibonacci (a.k.a. golden ratio) search among the current edge categories, instead of a bisection search among all possible values.
- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- u
- clear_candidates()#
Clear candidate edges for MCMC.
- collect_candidates(u=None)#
Store current edges into the list of candidates for MCMC. If
Graph
u
is provided, its edges will be added instead.
- collect_marginal(g=None)#
Collect marginal inferred network during MCMC runs.
- Parameters:
- g
Graph
(optional, default:None
) Previous marginal graph.
- g
- Returns:
- g
Graph
New marginal graph, with internal edge
EdgePropertyMap
"eprob"
,"x"
, and"xdev"
containing the marginal probabilities, mean weight, and weight standard deviation, respectively, for each edge, andVertexPropertyMap
"t"
and"tdev"
, for the mean and standard deviation, respectively, for the node biases.
- g
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol x}{\boldsymbol 1}_{x_{ij}>0}P(\boldsymbol x|\boldsymbol D)\]where \(P(\boldsymbol x|\boldsymbol D)\) is the posterior probability of the edge weights \(\boldsymbol x\) given the data. Likewise, the marginal mean \(\left<x_{ij}\right>\) and standard deviation \(\sigma_{ij}\) for the edge weights are given by
\[\begin{split}\begin{aligned} \left<x_{ij}\right> &= \sum_{\boldsymbol x}x_{ij}P(\boldsymbol x|\boldsymbol D)\\ \sigma_{ij}^2 &= \sum_{\boldsymbol x}(x_{ij} - \left<x_{ij}\right>)^2 P(\boldsymbol x|\boldsymbol D). \end{aligned}\end{split}\]The mean and standard deviation for the node biases are entirely analogous.
- collect_marginal_multigraph(g=None)#
Collect marginal latent multigraph during MCMC runs.
- Parameters:
- g
Graph
(optional, default:None
) Previous marginal multigraph.
- g
- Returns:
- g
Graph
New marginal graph, with internal edge
EdgePropertyMap
"w"
and"wcount"
, containing the edge multiplicities and their respective counts.
- g
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
- copy(**kwargs)#
Return a copy of the state.
- edge_MI(u, v)#
Return the mutual information between nodes \(u\) and \(v\), according to their time-series.
- edge_TE(u, v)#
Return the transfer entropy between nodes \(u\) and \(v\), according to their time-series.
- edge_cov(u, v, toffset=True, pearson=False)#
Return the covariance (or Pearson correlation if
pearson == True
) between nodes \(u\) and \(v\), according to their time-series.
- edge_mcmc_sweep(beta=1.0, niter=1, k=1, elist_args={}, keep_elist=False, pold=1, pnew=1, pxu=0.1, pm=1, premove=1, pself=0.1, puniform=1, pedge=1, pnearby=1, d=2, pcandidates=1, bisect_args={}, binary=False, deterministic=False, sequential=True, parallel=True, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges.
If
beta
isnp.inf
, the algorithm switches to a greedy heuristic based on iterated nearest-neighbor searches.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- k
int
(optional, default:1
) \(\kappa\) parameter to be passed to
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- elist_args
dict
(optional, default:{}
) Paramters to pass to call
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- keep_elist
boolean
(optional, default:False
) If
True
, the candidate edge list from last call will be re-used (if it exists).- pold
float
(optional, default:1
) Relative probability of proposing a new edge weight from existing categories.
- pnew
float
(optional, default:1
) Relative probability of proposing a new edge weight from a new categories.
- pxu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- pm
float
(optional, default:1
) Relative probability of doing edge multiplicity updates.
- premove
float
(optional, default:1
) Relative probability of removing edges.
- pself
float
(optional, default:.1
) Relative probability to search for self-loops as candidate node “pairs”.
- puniform
float
(optional, default:1
) Relative probability to search for candidate node pairs uniformly at random.
- pedge
float
(optional, default:1
) Relative probability to search for candidate node pairs among the current edges.
- pnearby
float
(optional, default:1
) Relative probability to search for candidate node pairs among the neighborhood of current nodes up to distance
d
.- d
int
(optional, default:2
) Maximum distance used to search for candidate node pairs.
- pcandidates
float
(optional, default:1
) Relative probability to search for candidate node pairs among currently stored list of candidate edges (obtained with
collect_candidates()
).- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.- binary
boolean
(optional, default:False
) If
True
, the latent graph will be assumed to be a simple graph, otherwise a multigraph.- deterministic
boolean
(optional, default:False
) If
True
, the the order of edge updates will be determinisitc, otherwise uniformly at random.- sequential
boolean
(optional, default:True
) If
True
, a sweep will visit every edge candidate once, otherwise individiual updates will be chosen at random.- parallel
boolean
(optional, default:True
) If
True
, the updates are performed in parallel, using locks on edges candidate incident on the same node.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- edge_multiflip_mcmc_sweep(beta=1.0, niter=1, pmerge=1, psplit=1, pmergesplit=1, gibbs_sweeps=5, c=0.1, bisect_args={}, accept_stats=None, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete edge weight categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- pmerge
float
(optional, default:1
) Relative probability of merging two discrete categories.
- psplit
float
(optional, default:1
) Relative probability of splitting two discrete categories.
- pmergesplit
float
(optional, default:1
) Relative probability of simultaneoulsly merging and splitting two discrete categories.
- gibbs_sweeps
int
(optional, default:5
) Number of Gibbs sweeps performed to achieve a split proposal.
- c
double
(optional, default:.1
) Probability of choosing a category uniformly at random to perform a merge, otherwise an adjacent one is chosen.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- accept_stats
dict
(optional, default:None
) If provided, the dictionary will be updated with acceptance statistics.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- entropy(latent_edges=True, density=False, aE=1, sbm=True, xdist=True, tdist=True, xdist_uniform=False, tdist_uniform=False, xl1=1, tl1=1, alpha=1, normal=False, mu=0, sigma=1, active=True, **kwargs)#
Return the description length, i.e. the negative joint log-likelihood.
Warning
The default arguments of this function are overriden by those obtained from
get_entropy_args()
. To update the defaults in a stateful way,update_entropy_args()
should be called.- Parameters:
- latent_edges
boolean
(optional, default:True
) If
True
, the adjacency term of the description length will be included.- density
boolean
(optional, default:False
) If
True
, a geometric prior for the total number of edges will be included.- aE
double
(optional, default:1
) If
density=True
, this will correspond to the expected number of edges according to the geometric prior.- sbm
boolean
(optional, default:True
) If
True
, SBM description length will be included.- xdist
boolean
(optional, default:True
) If
True
, the quantized edge weight distribution description length will be included.- xdist_uniform
boolean
(optional, default:False
) If
True
, a uniform prior for the edge weight distribution will be used.- tdist
boolean
(optional, default:True
) If
True
, the quantized node parameter distribution description length will be included.- tdist_uniform
boolean
(optional, default:False
) If
True
, a uniform prior for the node parameter distribution will be used.- xl1
float
(optional, default:1
) Specifies the \(\lambda\) parameter for \(L_1\) regularization for the edge weights if
xdist == False
, or the Laplace hyperprior for the discrete categories ifxdist == True
.- tl1
float
(optional, default:1
) Specifies the \(\lambda\) parameter for \(L_1\) regularization for the node paraemters if
tdist == False
, or the Laplace hyperprior for the discrete categories iftdist == True
.- normal
boolean
(optional, default:False
) If
True
, a normal distribution will be used for the weight priors.- mu
double
(optional, default:0
) If
normal == True
, this will be the mean of the normal distribution.- sigma
double
(optional, default:1
) If
normal == True
, this will be the standard deviation of the normal distribution.- active
boolean
(optional, default:True
) If
True
, the contribution of the active/inactive node states will be added to the description length.
- latent_edges
Notes
The “entropy” of the state is the negative log-likelihood of the generative model for the data \(\boldsymbol S\), that includes the inferred weighted adjacency matrix \(\boldsymbol{X}\), the node parameters \(\boldsymbol{\theta}\), and the SBM node partition \(\boldsymbol{b},\) given by
\[\begin{split}\begin{aligned} \Sigma(\boldsymbol{S},\boldsymbol{X},\boldsymbol{\theta}|\lambda_x,\lambda_{\theta},\Delta) = &- \ln P(\boldsymbol{S}|\boldsymbol{X},\boldsymbol{\theta})\\ &- \ln P(\boldsymbol{X}|\boldsymbol{A},\lambda_x, \Delta)\\ &- \ln P(\boldsymbol{A},\boldsymbol{b})\\ &- \ln P(\boldsymbol{\theta}, \lambda_{\theta}, \Delta). \end{aligned}\end{split}\]The term \(P(\boldsymbol{S}|\boldsymbol{X},\boldsymbol{\theta})\) is given by the particular generative model being used and \(P(\boldsymbol{A},\boldsymbol{b})\) by the SBM. The weight ditribution is given by the quantized model
\[P(\boldsymbol X|\boldsymbol A,\lambda_x,\Delta) = \frac{\prod_{k}m_{k}!\times \mathrm{e}^{-\lambda_x \sum_k |z_k|}(\mathrm{e}^{\lambda\Delta} - 1)^{K}} {E!{E-1 \choose K-1}2^{K}\max(E,1)}\]where \(\boldsymbol z\) are the \(K\) discrete weight categories, and analogously
\[P(\boldsymbol\theta|\lambda_{\theta},\Delta) =\frac{\prod_{k}n_{k}!\times \mathrm{e}^{-\lambda \sum_k |u_k|} \sinh(\lambda_{\theta}\Delta)^{K_{\theta}-\mathbb{1}_{0\in\boldsymbol u}} (1-\mathrm{e}^{-\lambda_{\theta}\Delta})^{\mathbb{1}_{0\in\boldsymbol u}}} {N!{N-1 \choose K_{\theta}-1}N},\]is the node parameter quantized distribution. For more details see [peixoto-network-2024].
References
[peixoto-network-2024]Tiago P. Peixoto, “Network reconstruction via the minimum description length principle”, arXiv: 2405.01015
[peixoto-scalable-2024]Tiago P. Peixoto, “Scalable network reconstruction in subquadratic time”, arXiv: 2401.01404
- get_block_state()#
Return the underlying block state, which can be either
BlockState
orNestedBlockState
.
- get_candidate_edges(k=1, r=1, max_rk='k', epsilon=0.01, c_stop=False, maxiter=0, knn=False, gradient=None, h=0.002, allow_edges=False, include_edges=True, use_hint=True, nrandom=0, keep_all=False, exact=False, return_graph=False, keep_iter=False, entropy_args={}, bisect_args={}, verbose=False)#
Return the \(\lfloor\kappa N\rceil\) best edge candidates according to a stochastic second neighbor search.
- Parameters:
- k
float
(optional, default:1
) \(\kappa\) parameter.
- r
float
(optional, default:1
) Fraction of second neighbors to consider during the search.
- max_rk
float
(optional, default:"k"
) Maximum number of second-neighbors to be considered per iteration. A string value
"k"
means that this will match the number of first neighbors.- epsilon
float
(optional, default:.01
) Convergence criterion.
- c_stop
boolean
(optional, default:False
) If
True
, the clustering coefficient will be used for the convergence criterion.- maxiter
int
(optional, default:0
) Maximum number of iterations allowed (
0
means unlimited).- knn
boolean
(optional, default:False
) If
True
, the KNN graph will be returned.- gradient
boolean
(optional, default:None
) Whether to use the gradient to rank edges. If
None
, it defaults toTrue
is the number of edge categories is empty.- h
float
(optional, default:1e-8
) Step length used to compute the gradient with central finite difference.
- allow_edges
boolean
(optional, default:False
) Permit currently present edges to be included in the search.
- use_hint
boolean
(optional, default:True
) Use current edges as a hint during the search.
- nrandom
int
(optional, default:0
) Add this many random entries to the list.
- keep_all
boolean
(optional, default:False
) Keep all entries seen during the search, not only the best.
- exact
boolean
(optional, default:False
) If
True
an exact quadratic algorithm will be used.- return_graph
boolean
(optional, default:False
) If
True
the result will be returned as graph and a property map.- keep_iter
boolean
(optional, default:False
) If
True
the results contain the iteration at which an entry has been found.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.
- k
- Returns:
- elist:class:
~numpy.ndarray
of shape(E, 2)
Best entries.
- a:class:
~numpy.ndarray
Edge scores.
- elist:class:
- get_edge_prob(u, v, x, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of edge \((u,v)\).
- get_edges_prob(elist, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- get_graph()#
Return the current inferred graph.
- get_params(params)#
Gets the model parameters via the dictionary
params
.
- get_theta()#
Return latent node values.
- get_thist()#
Return histogram of node categories.
- get_tvals()#
Return latent node categories.
- get_x()#
Return latent edge weights.
- get_xhist()#
Return histogram (i.e. counts) of edge weight categories.
- get_xvals()#
Return latent edge weight categories.
- mcmc_sweep(beta=1, niter=1, k=1, keep_elist=False, edge=True, edge_swap=True, edge_multiflip=True, theta=True, theta_multiflip=True, sbm=True, xvals=True, tvals=True, verbose=False, elist_args={}, edge_mcmc_args={}, edge_swap_mcmc_args={}, edge_multiflip_mcmc_args={}, xvals_mcmc_args={}, theta_mcmc_args={}, theta_multiflip_mcmc_args={}, tvals_mcmc_args={}, sbm_mcmc_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample latent edges and network partitions.
If
beta
isnp.inf
, the algorithm switches to a greedy heuristic based on iterated nearest-neighbor searches.- Parameters:
- beta
float
(optional, default:1
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- k
int
(optional, default:1
) \(\kappa\) parameter to be passed to
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- elist_args
dict
(optiona, default:{}
) Paramters to pass to call
get_candidate_edges()
. This parameter is ignored ifbeta
is notnp.inf
.- keep_elist
boolean
(optional, default:False
) If
True
, the candidate edge list from last call will be re-used (if it exists).- edge
boolean
(optiona, default:True
) Whether to call
edge_mcmc_sweep()
.- edge_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
edge_mcmc_sweep()
.- edge_swap
boolean
(optiona, default:True
) Whether to call
swap_mcmc_sweep()
.- edge_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
swap_mcmc_sweep()
.- edge_multiflip
boolean
(optiona, default:True
) Whether to call
edge_multiflip_mcmc_sweep()
.- edge_multiflip_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
edge_multiflip_mcmc_sweep()
.- theta
boolean
(optiona, default:True
) Whether to call
theta_mcmc_sweep()
.- theta_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
theta_mcmc_sweep()
.- theta_multiflip
boolean
(optiona, default:True
) Whether to call
theta_multiflip_mcmc_sweep()
.- theta_multiflip_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
theta_multiflip_mcmc_sweep()
.- sbm
boolean
(optiona, default:True
) Whether to call
sbm_mcmc_sweep()
.- sbm_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
sbm_mcmc_sweep()
.- xvals
boolean
(optiona, default:True
) Whether to call
xvals_sweep()
.- xvals_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
xvals_sweep()
.- tvals
boolean
(optiona, default:True
) Whether to call
tvals_sweep()
.- tvals_mcmc_args
dict
(optiona, default:{}
) Paramters to pass to call
tvals_sweep()
.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- **kwargs
dict
(optional, default:{}
) Remaining keyword parameters will be passed to all individual MCMC functions.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- remove_edge(u, v, dm=1)#
Remove edge \((u, v)\) with multiplicity
dm
.
- reset_entropy_args()#
Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- sample_t(v, beta=1, entropy_args={}, bisect_args={})#
Sample a value for node
v
.- Parameters:
- v
int
orVertex
Node to be considered.
- beta
float
(optional, default:1
) Inverse temperature.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- v
- sample_x(u, v, beta=1, entropy_args={}, bisect_args={}, ret_sampler=False)#
Sample a proposed weight value for edge \((u, v)\).
- Parameters:
- u
int
orVertex
Source node.
- v
int
orVertex
Target node.
- beta
float
(optional, default:1
) Inverse temperature.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- ret_sampler
boolean
(optional, default:False
) If
True
, aBisectionSampler
object will be returned as well (for debugging purposes).
- u
- sbm_mcmc_sweep(multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node partitions. The remaining keyword parameters will be passed to
mcmc_sweep()
ormultiflip_mcmc_sweep()
, ifmultiflip=True
.
- set_params(params)#
Sets the model parameters via the dictionary
params
.
- set_state(g, w)#
Set all edge multiplicities via
EdgePropertyMap
w
.
- set_tdelta(delta)#
Set node bias precision parameter.
- set_xdelta(delta)#
Set edge weight precision parameter.
- swap_mcmc_sweep(beta=1, niter=1, preplace=1, pswap=1, pself=0.1, puniform=1, pedge=1, pnearby=1, d=2, pcandidates=1, parallel=True, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to swap edge endpoints.
- Parameters:
- beta
float
(optional, default:np.inf
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- preplace
float
(optional, default:1
) Relative probability of swaping the weights between an edge and another node pair incident on one of the same two endpoints.
- pswap
float
(optional, default:1
) Relative probability of swapping the endpoints of two selected edges or node pairs.
- pself
float
(optional, default:.1
) Relative probability to search for self-loops as candidate node “pairs”.
- puniform
float
(optional, default:1
) Relative probability to search for candidate node pairs uniformly at random.
- pedge
float
(optional, default:1
) Relative probability to search for candidate node pairs among the current edges.
- pnearby
float
(optional, default:1
) Relative probability to search for candidate node pairs among the neighborhood of current nodes up to distance
d
.- d
int
(optional, default:2
) Maximum distance used to search for candidate node pairs.
- pcandidates
float
(optional, default:1
) Relative probability to search for candidate node pairs among currently stored list of candidate edges (obtained with
collect_candidates()
).- parallel
boolean
(optional, default:True
) If
True
, the updates are performed in parallel, using locks on edges candidate incident on the same node.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- tdelta_mcmc_sweep(beta=1.0, niter=1, step=10, pold=0.5, ptu=0.1, intra_sweeps=10, verbose=False, entropy_args={}, bisect_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the node categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- step
float
(optional, default:10
) Multiplicative move step size.
- pold
float
(optional, default:1
) Relative probability of proposing a new edge weight from existing categories.
- ptu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- intra_sweeps
int
(optional, default:10
) Number of Metropolis-Hastings sweeps performed to achieve a staging proposal.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- theta_mcmc_sweep(beta=1.0, niter=1, pold=1, pnew=1, ptu=0.1, bisect_args={}, deterministic=False, sequential=True, parallel=True, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample node parameters.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- pold
float
(optional, default:1
) Relative probability of proposing a new node value from existing categories.
- pnew
float
(optional, default:1
) Relative probability of proposing a new node value from a new categories.
- ptu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.- deterministic
boolean
(optional, default:False
) If
True
, the the order of node updates will be determinisitc, otherwise uniformly at random.- sequential
boolean
(optional, default:True
) If
True
, a sweep will visit every node once, otherwise individiual updates will be chosen at random.- parallel
boolean
(optional, default:True
) If
True
, the updates are performed in parallel.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- theta_multiflip_mcmc_sweep(beta=1.0, niter=1, pmerge=1, psplit=1, pmergesplit=1, gibbs_sweeps=5, c=0.1, bisect_args={}, accept_stats=None, verbose=False, entropy_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample discrete node value categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- pmerge
float
(optional, default:1
) Relative probability of merging two discrete categories.
- psplit
float
(optional, default:1
) Relative probability of splitting two discrete categories.
- pmergesplit
float
(optional, default:1
) Relative probability of simultaneoulsly merging and splitting two discrete categories.
- gibbs_sweeps
int
(optional, default:5
) Number of Gibbs sweeps performed to achieve a split proposal.
- c
double
(optional, default:.1
) Probability of choosing a category uniformly at random to perform a merge, otherwise an adjacent one is chosen.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.- accept_stats
dict
(optional, default:None
) If provided, the dictionary will be updated with acceptance statistics.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- tvals_sweep(beta=1.0, niter=100, min_size=1, bisect_args={}, entropy_args={})#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the node bias category values, based on a bisection search.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:100
) Maximum number of categories to update.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample node biases. See
bisect_x()
) for documentation.- min_size
int
(optional, default:1
) Minimum size of node categories that will be updated.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- update_edge(u, v, nx)#
update edge \((u, v)\) with weight
nx
.
- update_entropy_args(**kwargs)#
Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.Values updated in this manner are preserved by the copying or pickling of the state.
- update_node(v, nt)#
update node \((u, v)\) with value
nt
.
- virtual_add_edge(u, v, x, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) would be added with multiplicity
dm
and weightx
.
- virtual_remove_edge(u, v, dm=1, entropy_args={})#
Return the difference in description length if edge \((u, v)\) with multiplicity
dm
would be removed.
- virtual_update_edge(u, v, nx, entropy_args={})#
Return the difference in description length if edge \((u, v)\) would take a new weight
nx
.
- virtual_update_node(v, nt, entropy_args={})#
Return the difference in description length if node
v
would take a new valuent
.
- xdelta_mcmc_sweep(beta=1.0, niter=1, step=10, pold=0.5, pxu=0.1, intra_sweeps=10, verbose=False, entropy_args={}, bisect_args={}, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample the precision parameter of the edge categories.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:1
) Number of sweeps.
- step
float
(optional, default:10
) Multiplicative move step size.
- pold
float
(optional, default:1
) Relative probability of proposing a new edge weight from existing categories.
- pxu
float
(optional, default:.1
) Probability of choosing from an existing category uniformly at random (instead of doing a bisection search).
- intra_sweeps
int
(optional, default:10
) Number of Metropolis-Hastings sweeps performed to achieve a staging proposal.
- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search. See
bisect_x()
) for documentation.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS
- xvals_sweep(beta=1.0, niter=100, bisect_args={}, min_size=1, entropy_args={}, verbose=False)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection merge-split MCMC to sample the edge weight category values, based on a bisection search.
- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature parameter.
- niter
int
(optional, default:100
) Maximum number of categories to update.
- bisect_args
dict
(optional, default:{}
) Parameter for the bisection search use to optimize/sample edge weights. See
bisect_x()
) for documentation.- min_size
int
(optional, default:1
) Minimum size of edge categories that will be updated.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
entropy()
.- verbose
boolean
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nmoves
int
Number of variables moved.
- dS