marginal_multigraph_entropy

marginal_multigraph_entropy#

graph_tool.inference.marginal_multigraph_entropy(g, ecount)[source]#

Compute the entropy of the marginal latent multigraph distribution.

Parameters:
gGraph

Marginal multigraph.

ecountEdgePropertyMap

Vector-valued edge property map containing the counts of edge multiplicities.

Returns:
ehEdgePropertyMap

Marginal entropy of edge multiplicities.

Notes

The mean posterior marginal multiplicity distribution of a multi-edge (i,j) is defined as

πij(w)=Gδw,GijP(G|D)

where P(G|D) is the posterior probability of a multigraph G given the data.

The corresponding entropy is therefore given (in nats) by

Sij=wπij(w)lnπij(w).