#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2025 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from .. import _prop, Graph, GraphView, _get_rng, PropertyMap, \
edge_endpoint_property, Vector_size_t
from .. generation import generate_triadic_closure, remove_parallel_edges, \
remove_self_loops
from .. spectral import adjacency
from .. dl_import import dl_import
dl_import("from . import libgraph_tool_inference as libinference")
from . blockmodel import *
from . nested_blockmodel import *
from . base_states import _bm_test
from . uncertain_blockmodel import UncertainBaseState
import numpy.random
[docs]
class LatentLayerBaseState(EntropyState):
r"""Base state for uncertain latent layer network inference."""
[docs]
def get_ec(self, ew=None):
"""Return edge property map with layer membership."""
if ew is None:
ew = self.ew
ec = []
for u, ew in zip(self.us, ew):
w = self.g.copy_property(ew, g=u)
ec.append(w)
return ec
[docs]
def collect_marginal(self, gs=None, total=False):
r"""Collect marginal inferred network during MCMC runs.
Parameters
----------
g : list of :class:`~graph_tool.Graph` (optional, default: ``None``)
Previous marginal graphs.
Returns
-------
g : list :class:`~graph_tool.Graph`
New list of marginal graphs, each with internal edge
:class:`~graph_tool.EdgePropertyMap` ``"eprob"``, containing the
marginal probabilities for each edge.
Notes
-----
The posterior marginal probability of an edge :math:`(i,j)` is defined as
.. math::
\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)
where :math:`P(\boldsymbol A|\boldsymbol D)` is the posterior
probability given the data.
This function returns a list with the marginal graphs for every layer.
"""
if gs is None:
gs = []
L = len(self.us)
if total:
L += 1
for l in range(L):
g = Graph(directed=self.g.is_directed())
g.add_vertex(self.g.num_vertices())
g.gp.count = g.new_gp("int", 0)
g.ep.count = g.new_ep("int")
gs.append(g)
for l, g in enumerate(gs):
u = self.us[l] if l < len(self.us) else self.g
if l == 0:
es = edge_endpoint_property(u, u.vertex_index, "source")
et = edge_endpoint_property(u, u.vertex_index, "target")
u = GraphView(u, efilt=es.fa != et.fa)
g.set_fast_edge_lookup(True)
graph_merge(g, u, in_place=True, simple=True,
props={"sum": [(g.ep.count, u.new_ep("int", val=1))]})
g.gp.count += 1
if "eprob" not in g.ep:
g.ep.eprob = g.new_ep("double")
g.ep.eprob.fa = g.ep.count.fa
g.ep.eprob.fa /= g.gp.count
return gs
[docs]
def collect_marginal_multigraph(self, gs=None):
r"""Collect marginal latent multigraphs during MCMC runs.
Parameters
----------
g : list of :class:`~graph_tool.Graph` (optional, default: ``None``)
Previous marginal multigraphs.
Returns
-------
g : list of :class:`~graph_tool.Graph`
New marginal multigraphs, each with internal edge
:class:`~graph_tool.EdgePropertyMap` ``"w"`` and ``"wcount"``,
containing the edge multiplicities and their respective counts.
Notes
-----
The mean posterior marginal multiplicity distribution of a multi-edge
:math:`(i,j)` is defined as
.. math::
\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)
where :math:`P(\boldsymbol G|\boldsymbol D)` is the posterior
probability of a multigraph :math:`\boldsymbol G` given the data.
This function returns a list with the marginal graphs for every layer.
"""
if gs is None or len(gs) != len(self.us):
gs = []
for l in range(len(self.us)):
g = Graph(directed=self.g.is_directed())
g.add_vertex(self.g.num_vertices())
g.ep.w = g.new_ep("vector<int>")
g.ep.wcount = g.new_ep("vector<int>")
gs.append(g)
for l, g in enumerate(gs):
u = self.us[l]
ew = self.ew[l]
libinference.collect_marginal_count(g._Graph__graph,
u._Graph__graph,
_prop("e", u, ew),
_prop("e", g, g.ep.w),
_prop("e", g, g.ep.wcount))
return gs
def _gen_eargs(self, args):
if isinstance(self.bstates[0], NestedBlockState):
bstate = self.bstates[0].levels[0]
else:
bstate = self.bstates[0]
ea = bstate._get_entropy_args(args, consume=True)
return libinference.uentropy_args(ea)
def _mcmc_sweep(self, mcmc_state):
return libinference.mcmc_latent_layers_sweep(mcmc_state,
self._state,
_get_rng())
@mcmc_sweep_wrap
def _algo_sweep(self, algo, r=.5, **kwargs):
kwargs = kwargs.copy()
beta = kwargs.get("beta", 1.)
niter = kwargs.get("niter", 1)
verbose = kwargs.get("verbose", False)
entropy_args = self._get_entropy_args(kwargs.get("entropy_args", {}))
kwargs.get("entropy_args", {}).pop("latent_edges", None)
kwargs.get("entropy_args", {}).pop("density", None)
state = self._state
mcmc_state = DictState(dict(kwargs, **locals()))
if numpy.random.random() < r:
for s in self.bstates:
s._clear_egroups()
return self._mcmc_sweep(mcmc_state)
else:
bstate = numpy.random.choice(self.bstates)
bstate._clear_egroups()
return algo(bstate, **dict(kwargs, test=False))
[docs]
def mcmc_sweep(self, r=.5, multiflip=True, **kwargs):
r"""Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to
sample network partitions and latent edges. The parameter ``r`` controls
the probability with which edge move will be attempted, instead of
partition moves. The remaining keyword parameters will be passed to
:meth:`~graph_tool.inference.BlockState.mcmc_sweep` or
:meth:`~graph_tool.inference.BlockState.multiflip_mcmc_sweep`,
if ``multiflip=True``.
"""
if multiflip:
return self._algo_sweep(lambda s, **kw: s.multiflip_mcmc_sweep(**kw),
r=r, **kwargs)
else:
return self._algo_sweep(lambda s, **kw: s.mcmc_sweep(**kw),
r=r, **kwargs)
[docs]
def multiflip_mcmc_sweep(self, **kwargs):
r"""Alias for :meth:`~LatentLayerBaseState.mcmc_sweep` with ``multiflip=True``."""
return self.mcmc_sweep(multiflip=True, **kwargs)
[docs]
@entropy_state_signature
class LatentClosureBlockState(LatentLayerBaseState):
r"""Inference state of the stochastic block model with latent triadic closure
edges.
Parameters
----------
g : :class:`~graph_tool.Graph`
Observed graph.
L : ``int`` (optional, default: ``1``)
Maximum number of triadic closure generations.
b : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
Inital partition (or hierarchical partition ``nested=True``).
aE : ``float`` (optional, default: ``NaN``)
Expected total number of edges used in prior. If ``NaN``, a flat
prior will be used instead.
nested : ``boolean`` (optional, default: ``True``)
If ``True``, a :class:`~graph_tool.inference.NestedBlockState`
will be used, otherwise
:class:`~graph_tool.inference.BlockState`.
state_args : ``dict`` (optional, default: ``{}``)
Arguments to be passed to
:class:`~graph_tool.inference.NestedBlockState` or
:class:`~graph_tool.inference.BlockState`.
g_orig : :class:`~graph_tool.Graph` (optional, default: ``None``)
Original graph, if ``g`` is used to initialize differently from a graph with no triadic closure edges.
ew : list of :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
List of edge property maps of ``g``, containing the initial weights
(counts) at each triadic generation.
ex : list of :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
List of edge property maps of ``g``, each containing a list of integers
with the ego graph memberships of every edge, for every triadic
generation.
entropy_args: ``dict`` (optional, default: ``{}``)
Override default arguments for
:meth:`~LatentClosureBlockState.entropy()` method and releated
operations.
References
----------
.. [peixoto-disentangling-2022] Tiago P. Peixoto, "Disentangling homophily,
community structure and triadic closure in networks", Phys. Rev. X 12,
011004 (2022), :doi:`10.1103/PhysRevX.12.011004`, :arxiv:`2101.02510`
"""
def __init__(self, g, L=1, b=None, aE=numpy.nan, nested=True,
state_args={}, g_orig=None, ew=None, ex=None, entropy_args={},
**kwargs):
EntropyState.__init__(self, entropy_args=entropy_args)
self.g = g
self.us = []
self.ew = []
self.ex = []
if ew is None:
ew = [g.new_ep("int", val=1)] + [g.new_ep("int", val=0) for l in range(L)]
if ex is None:
ex = [g.new_ep("vector<int>") for l in range(L+1)]
for w, x in zip(ew, ex):
u = GraphView(g, efilt=w.fa > 0)
u.ep.w = w
u.ep.x = x
u = Graph(u, prune=True)
self.us.append(u)
self.ew.append(u.ep.w)
self.ex.append(u.ep.x)
self.nested = nested
self.state_args = state_args
if nested:
self.bstate = NestedBlockState(self.us[0], eweight=self.ew[0], bs=b,
**state_args)
self.ew[0] = self.bstate.levels[0].eweight
self.b = self.bstate.levels[0].b
else:
self.bstate = BlockState(self.us[0], eweight=self.ew[0], b=b,
**state_args)
self.ew[0] = self.bstate.eweight
self.b = self.bstate.b
if nested:
self.pstate = self.bstate.levels[0]
else:
self.pstate = self.bstate
self._entropy_args.update(self.pstate._entropy_args)
self.aE = aE
if numpy.isnan(aE):
self.E_prior = False
else:
self.E_prior = True
if g_orig is None:
self.g_orig = g
self.g = g = g.copy()
else:
self.g_orig = g_orig
self.og = self.g._get_any()
self.eweight = self.g.new_ep("int")
self.oa = [u._get_any() for u in self.us]
self.oaw = [w._get_any() for w in self.ew]
self.ox = [x._get_any() for x in self.ex]
self.L = len(self.us)
self.m = [u.new_ep("vector<int>") for u in self.us]
self.om = [m._get_any() for m in self.m]
self.M = [u.new_vp("int") for u in self.us]
self.oM = [M._get_any() for M in self.M]
self.E = [u.new_vp("int") for u in self.us]
self.oE = [E._get_any() for E in self.E]
self.bstates = [self.bstate]
self.measured = kwargs.get("measured", False)
self.ag_orig = self.g_orig._get_any()
self.n = kwargs.get("n", self.g_orig.new_ep("int", 1))
self.x = kwargs.get("x", self.g_orig.new_ep("int", 1))
self.n_default = kwargs.get("n_default", 1)
self.x_default = kwargs.get("x_default", 0)
fn_params = kwargs.get("fn_params", {})
fp_params = kwargs.get("fp_params", {})
self.alpha = fn_params.get("alpha", 1)
self.beta = fn_params.get("beta", 1)
self.mu = fp_params.get("mu", 1)
self.nu = fp_params.get("nu", 1)
self.lp = kwargs.get("lp", numpy.nan)
self.lq = kwargs.get("lq", numpy.nan)
self.max_w = kwargs.get("max_w", 1 << 16)
self.self_loops = True
if nested:
bstate = self.bstate.levels[0]._state
else:
bstate = self.bstate._state
ret = libinference.make_latent_closure_state(bstate,
self.pstate._state,
self, self.L)
self._cstates = ret[:self.L]
self._state = ret[-1]
cstate = self._cstates[0]
if nested:
bstate = self.bstate.levels[0]._state
else:
bstate = self.bstate._state
pstate = self.pstate._state
def __getstate__(self):
state = EntropyState.__getstate__(self)
return dict(state, g=self.g, L=self.L-1,
b=self.bstate.get_bs() if self.nested else self.bstate.b.copy(),
aE=self.aE, nested=self.nested,
state_args=self.state_args, g_orig=self.g_orig,
ew=self.get_ec(self.ew), ex=self.get_ec(self.ex))
def __setstate__(self, state):
self.__init__(**state)
[docs]
def copy(self, **kwargs):
"""Return a copy of the state."""
return LatentClosureBlockState(**dict(self.__getstate__(), **kwargs))
def __copy__(self):
return self.copy()
def __repr__(self):
return "<LatentClosureBlockState object with (%s) closure edges, and %s, at 0x%x>" % \
(", ".join([str(w.fa.sum()) for w in self.ew[1:]]), repr(self.bstate), id(self))
@copy_state_wrap
def _entropy(self, latent_edges=True, density=False, aE=1., sbm=True, **kwargs):
"""Return the entropy, i.e. negative log-likelihood."""
eargs = self._get_entropy_args(locals())
S = self._state.entropy(eargs)
S += self.bstates[0].entropy(**kwargs)
for s in self._cstates[1:]:
S += s.entropy()
return S
[docs]
def sample_graph(self, sample_sbm=True, canonical_sbm=False,
sample_params=True, canonical_closure=True):
"""Sample graph from inferred model.
Parameters
----------
sample_sbm : ``boolean`` (optional, default: ``True``)
If ``True``, the substrate network will be sampled anew from the SBM
parameters. Otherwise, it will be the same as the current posterior
state.
canonical_sbm : ``boolean`` (optional, default: ``False``)
If ``True``, the canonical SBM will be used, otherwise the
microcanonical SBM will be used.
sample_params : ``bool`` (optional, default: ``True``)
If ``True``, and ``canonical_sbm == True`` the count parameters
(edges between groups and node degrees) will be sampled from their
posterior distribution conditioned on the actual state. Otherwise,
their maximum-likelihood values will be used.
canonical_closure : ``boolean`` (optional, default: ``True``)
If ``True``, the canonical version of triadic clousre will be used
(i.e. conditioned on a probability), otherwise the microcanonical
version will be used (i.e. conditional on the count number).
Returns
-------
u : list :class:`~graph_tool.Graph`
Sampled graph, with internal edge
:class:`~graph_tool.EdgePropertyMap` ``"gen"``, containing the
triadic generation of each edge.
"""
if sample_sbm:
if self.nested:
bstate = self.bstate.levels[0]
else:
bstate = self.bstate
u = bstate.sample_graph(self_loops=False, multigraph=False,
canonical=canonical_sbm,
sample_params=sample_params)
else:
u = self.us[0].copy()
u.ep.gen = u.new_ep("int")
for l, (g, w) in enumerate(zip(self.us[1:], self.ew[1:])):
t = u.own_property(self.E[l + 1])
if canonical_closure:
M = self.M[l + 1]
t = t.copy("double")
idx = t.a > 0
t.fa[idx] = numpy.random.beta(t.a[idx] + 1, (M.a - t.a)[idx] + 1)
if t.a.sum() == 0:
break
old = u.new_ep("bool", True)
curr = u.new_ep("bool", vals=u.ep.gen.fa == l)
generate_triadic_closure(u, curr=curr, t=t, probs=canonical_closure)
new = GraphView(u, efilt=numpy.logical_not(old.fa))
remove_parallel_edges(new)
gen = new.own_property(u.ep.gen)
gen.fa = l + 1
return u
def _mcmc_sweep(self, mcmc_state):
return libinference.mcmc_latent_closure_sweep(mcmc_state,
self._state,
_get_rng())
@mcmc_sweep_wrap
def _algo_sweep(self, algo, r=.5, **kwargs):
kwargs = kwargs.copy()
beta = kwargs.get("beta", 1.)
niter = kwargs.get("niter", 1)
verbose = kwargs.get("verbose", False)
entropy_args = self._get_entropy_args(kwargs.get("entropy_args", {}))
kwargs.get("entropy_args", {}).pop("latent_edges", None)
kwargs.get("entropy_args", {}).pop("density", None)
state = self._state
mcmc_state = DictState(dict(kwargs, **locals()))
if numpy.random.random() < r:
for s in self.bstates:
s._clear_egroups()
mcmc_state.niter *= len(self.us)
return self._mcmc_sweep(mcmc_state)
else:
bstate = self.bstates[0]
bstate._clear_egroups()
return algo(bstate, **dict(kwargs, test=False))
return dS, nattempts, nmoves
[docs]
def collect_marginal(self, gs=None):
r"""Collect marginal inferred network during MCMC runs.
Parameters
----------
g : list of :class:`~graph_tool.Graph` (optional, default: ``None``)
Previous marginal graphs.
Returns
-------
g : list :class:`~graph_tool.Graph`
New list of marginal graphs, each with internal
:class:`~graph_tool.EdgePropertyMap` ``"eprob"``, containing the
marginal probabilities for each edge, as well as
:class:`~graph_tool.VertexPropertyMap` ``"t"``, ``"m"``, ``"c"``,
containing the average number of closures, open triads, and fraction
of closed triads on each node.
Notes
-----
The posterior marginal probability of an edge :math:`(i,j)` is defined as
.. math::
\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)
where :math:`P(\boldsymbol A|\boldsymbol D)` is the posterior
probability given the data.
This function returns a list with the marginal graphs for every layer.
"""
gs = LatentLayerBaseState.collect_marginal(self, gs, total=self.measured)
for l in range(len(self.us)):
E = self.E[l]
M = self.M[l]
u = gs[l]
tsum = u.vp.get("tsum", None)
if tsum is None:
tsum = u.vp.tsum = u.new_vp("int")
u.vp.msum = u.new_vp("int")
u.vp.t = u.new_vp("double")
u.vp.m = u.new_vp("double")
u.vp.csum = u.new_vp("double")
u.vp.c = u.new_vp("double")
msum = u.vp.msum
t = u.vp.t
m = u.vp.m
csum = u.vp.csum
c = u.vp.c
tsum.a += E.a
msum.a += M.a
idx = M.a > 0
csum.a[idx] += E.a[idx] / M.a[idx]
t.a = tsum.a / u.gp.count
m.a = msum.a / u.gp.count
c.a = csum.a / u.gp.count
return gs
[docs]
class MeasuredClosureBlockState(LatentClosureBlockState, UncertainBaseState):
r"""Inference state of a measured graph, using the stochastic block model with
triadic closure as a prior.
Parameters
----------
g : :class:`~graph_tool.Graph`
Measured graph.
n : :class:`~graph_tool.EdgePropertyMap`
Edge property map of type ``int``, containing the total number of
measurements for each edge.
x : :class:`~graph_tool.EdgePropertyMap`
Edge property map of type ``int``, containing the number of
positive measurements for each edge.
n_default : ``int`` (optional, default: ``1``)
Total number of measurements for each non-edge.
x_default : ``int`` (optional, default: ``0``)
Total number of positive measurements for each non-edge.
L : ``int`` (optional, default: ``1``)
Maximum number of triadic closure generations.
b : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
Inital partition (or hierarchical partition ``nested=True``).
fn_params : ``dict`` (optional, default: ``dict(alpha=1, beta=1)``)
Beta distribution hyperparameters for the probability of missing
edges (false negatives).
fp_params : ``dict`` (optional, default: ``dict(mu=1, nu=1)``)
Beta distribution hyperparameters for the probability of spurious
edges (false positives).
aE : ``float`` (optional, default: ``NaN``)
Expected total number of edges used in prior. If ``NaN``, a flat
prior will be used instead.
nested : ``boolean`` (optional, default: ``True``)
If ``True``, a :class:`~graph_tool.inference.NestedBlockState`
will be used, otherwise
:class:`~graph_tool.inference.BlockState`.
state_args : ``dict`` (optional, default: ``{}``)
Arguments to be passed to
:class:`~graph_tool.inference.NestedBlockState` or
:class:`~graph_tool.inference.BlockState`.
bstate : :class:`~graph_tool.inference.NestedBlockState` or :class:`~graph_tool.inference.BlockState` (optional, default: ``None``)
If passed, this will be used to initialize the block state
directly.
g_orig : :class:`~graph_tool.Graph` (optional, default: ``None``)
Original graph, if ``g`` is used to initialize differently from a graph with no triadic closure edges.
ew : list of :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
List of edge property maps of ``g``, containing the initial weights
(counts) at each triadic generation.
ex : list of :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
List of edge property maps of ``g``, each containing a list of integers
with the ego graph memberships of every edge, for every triadic
generation.
References
----------
.. [peixoto-disentangling-2022] Tiago P. Peixoto, "Disentangling homophily,
community structure and triadic closure in networks", Phys. Rev. X 12,
011004 (2022), :doi:`10.1103/PhysRevX.12.011004`, :arxiv:`2101.02510`
"""
def __init__(self, g, n, x, n_default=1, x_default=0, L=1, b=None,
fn_params=dict(alpha=1, beta=1), fp_params=dict(mu=1, nu=1),
aE=numpy.nan, nested=True, state_args={}, bstate=None,
g_orig=None, ew=None, ex=None, **kwargs):
UncertainBaseState.__init__(self, g, nested=nested, state_args=state_args,
bstate=bstate, **kwargs)
LatentClosureBlockState.__init__(self, g, L=L, b=b, aE=aE,
nested=nested, state_args=state_args,
g_orig=g_orig,
ew=ew, ex=ex, n=n, x=x,
n_default=n_default,
x_default=x_default,
fn_params=fn_params,
fp_params=fp_params, measured=True)
def __getstate__(self):
return dict(g=self.g, n=self.n, x=self.x,
n_default=self.n_default,
x_default=self.x_default, L=self.L-1,
b=self.bstate.get_bs() if self.nested else self.bstate.b.copy(),
fn_params=dict(alpha=self.alpha, beta=self.beta),
fp_params=dict(mu=self.mu, nu=self.nu),
aE=self.aE, nested=self.nested,
state_args=self.state_args, g_orig=self.g_orig,
ew=self.get_ec(self.ew), ex=self.get_ec(self.ex))
def __setstate__(self, state):
self.__init__(**state)
[docs]
def copy(self, **kwargs):
"""Return a copy of the state."""
return MeasuredClosureBlockState(**dict(self.__getstate__(), **kwargs))
def __repr__(self):
return "<MeasuredClosureBlockState object with (%s) closure edges, and %s, at 0x%x>" % \
(", ".join([str(w.fa.sum()) for w in self.ew[1:]]), repr(self.bstate), id(self))
[docs]
def get_graph(self):
r"""Return the current inferred graph."""
es = edge_endpoint_property(self.g, self.g.vertex_index, "source")
et = edge_endpoint_property(self.g, self.g.vertex_index, "target")
u = GraphView(self.g, efilt=numpy.logical_and(self.eweight.fa > 0,
es.fa != et.fa))
return u
[docs]
def set_hparams(self, alpha, beta, mu, nu):
"""Set edge and non-edge hyperparameters."""
self._state.set_hparams(alpha, beta, mu, nu)
self.alpha = alpha
self.beta = beta
self.mu = mu
self.nu = nu
[docs]
def get_p_posterior(self):
"""Get beta distribution parameters for the posterior probability of missing edges."""
T = self._state.get_T()
M = self._state.get_M()
return M - T + self.alpha, T + self.beta
[docs]
def get_q_posterior(self):
"""Get beta distribution parameters for the posterior probability of spurious edges."""
N = self._state.get_N()
X = self._state.get_X()
T = self._state.get_T()
M = self._state.get_M()
return X - T + self.mu, N - X - (M - T) + self.nu