NormalState#
- class graph_tool.dynamics.NormalState(g, w=0, sigma=1, s=None)[source]#
Bases:
DiscreteStateBase
Multivariate Normal distribution.
- Parameters:
- g
Graph
Graph represening the conditional dependencies.
- w
EdgePropertyMap
orfloat
(optional, default:0
) Inverse covariance (i.e. coupling strength) between nodes.
- sigma
VertexPropertyMap
orfloat
(optional, default:1
) Node standard deviation.
- s
VertexPropertyMap
(optional, default:None
) Initial global state. If not provided, a random state will be chosen.
- g
Notes
This implements a zero-mean multivariate Normal distribution.
If a node \(i\) is updated at time \(t\), the transition to state \(s_i(t+1)\) is given by
\[P(s_i(t+1)|\boldsymbol s(t), \boldsymbol A, \boldsymbol w, \boldsymbol \sigma) = \frac{\exp\left[-\frac{\left(s_i(t+1)+\sigma_i^2\sum_jA_{ij}w_{ij}s_j(t)\right)^2} {2\sigma_i^2}\right]} {\sqrt{2\pi}\sigma_i}\]which will lead, asymptotically with \(t\to\infty\), to a zero-mean multivariate Normal distribution:
\[P(\boldsymbol s | \boldsymbol W) = \frac{\mathrm{e}^{-\frac{1}{2} {\boldsymbol x}^{\top}\boldsymbol W \boldsymbol x}} {\sqrt{(2\pi)^N |\boldsymbol W^{-1}|}},\]where \(W_{ij}=w_{ij}\) for \(i\neq j\) and \(W_{ii}=1/\sigma_i^2\).
References
Examples
>>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.NormalState(g, sigma=0.001, w=-100) >>> ret = state.iterate_sync(niter=1000) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="polblogs-normal.svg") <...>
Methods
copy
()Return a copy of the state.
Returns list of "active" nodes, for states where this concept is used.
Returns the internal
VertexPropertyMap
with the current state.iterate_async
([niter])Updates nodes asynchronously (i.e. single vertex chosen randomly), niter number of times.
iterate_sync
([niter])Updates nodes synchronously (i.e. a full "sweep" of all nodes in parallel), niter number of times.
Resets list of "active" nodes, for states where this concept is used.
set_active
(active)Sets the list of "active" nodes, for states where this concept is used.
- copy()#
Return a copy of the state.
- get_active()#
Returns list of “active” nodes, for states where this concept is used.
- get_state()#
Returns the internal
VertexPropertyMap
with the current state.
- iterate_async(niter=1)#
Updates nodes asynchronously (i.e. single vertex chosen randomly), niter number of times. This function returns the number of nodes that changed state.
- iterate_sync(niter=1)#
Updates nodes synchronously (i.e. a full “sweep” of all nodes in parallel), niter number of times. This function returns the number of nodes that changed state.
Parallel implementation.
If enabled during compilation, this algorithm will run in parallel using OpenMP. See the parallel algorithms section for information about how to control several aspects of parallelization.
- reset_active()#
Resets list of “active” nodes, for states where this concept is used.
- set_active(active)#
Sets the list of “active” nodes, for states where this concept is used.