Source code for graph_tool.dynamics

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2025 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
``graph_tool.dynamics``
-----------------------

This module contains implementations of some often-studied dynamical processes
that take place on networks.

Discrete-time dynamics
======================

.. autosummary::
   :nosignatures:
   :toctree: autosummary
   :template: class.rst

   DiscreteStateBase
   EpidemicStateBase
   SIState
   SISState
   SIRState
   SIRSState
   VoterState
   MajorityVoterState
   BinaryThresholdState
   IsingGlauberState
   CIsingGlauberState
   IsingMetropolisState
   PottsGlauberState
   PottsMetropolisState
   AxelrodState
   BooleanState
   KirmanState
   NormalState
   LinearNormalState

Continuous-time dynamics
========================

.. autosummary::
   :nosignatures:
   :toctree: autosummary
   :template: class.rst

   ContinuousStateBase
   LinearState
   LVState
   KuramotoState

Belief propagation
==================

.. autosummary::
   :nosignatures:
   :toctree: autosummary
   :template: class.rst

   BPBaseState
   GenPottsBPState
   IsingBPState
   NormalBPState


Contents
++++++++

"""

from .. import _degree, _prop, Graph, GraphView, _get_rng, PropertyMap, \
    EdgePropertyMap, VertexPropertyMap, _check_prop_scalar, _parallel
from .. generation import label_self_loops
import numpy
import numpy.random
import collections.abc

import scipy.integrate

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_dynamics as lib_dynamics")

from . bp import *

__all__ = ["DiscreteStateBase", "EpidemicStateBase", "SIState", "SISState",
           "SIRState", "SIRSState", "VoterState", "MajorityVoterState",
           "BinaryThresholdState", "IsingGlauberState", "CIsingGlauberState",
           "IsingMetropolisState", "PottsGlauberState", "PottsMetropolisState",
           "AxelrodState", "BooleanState", "KirmanState", "NormalState",
           "LinearNormalState", "LinearState", "LVState",
           "GeneralizedBinaryState", "ContinuousStateBase", "KuramotoState",
           "BPBaseState", "GenPottsBPState", "IsingBPState", "NormalBPState"]

[docs] class DiscreteStateBase(object): def __init__(self, g, make_state, params, s=None, stype="int32_t"): r"""Base state for discrete-time dynamics. This class it not meant to be instantiated directly.""" self.g = g if s is None: self.s = g.new_vp(stype) else: self.s = s.copy(stype) self.s_temp = self.s.copy() self.params = params self._state = make_state(g._Graph__graph, _prop("v", g, self.s), _prop("v", g, self.s_temp), params, _get_rng()) self.reset_active()
[docs] def copy(self): """Return a copy of the state.""" return type(self)(self.__getstate__())
def __getstate__(self): return dict(g=self.g, s=self.s, params=self.params) def __setstate__(self, state): self.__init__(**state)
[docs] def get_state(self): """Returns the internal :class:`~graph_tool.VertexPropertyMap` with the current state.""" return self.s
[docs] def get_active(self): """Returns list of "active" nodes, for states where this concept is used.""" return self._state.get_active()
[docs] def set_active(self, active): """Sets the list of "active" nodes, for states where this concept is used.""" self._state.set_active(numpy.asarray(active, dtype="int64"), _get_rng())
[docs] def reset_active(self): """Resets list of "active" nodes, for states where this concept is used.""" self._state.reset_active(_get_rng())
[docs] @_parallel def iterate_sync(self, niter=1): """Updates nodes synchronously (i.e. a full "sweep" of all nodes in parallel), `niter` number of times. This function returns the number of nodes that changed state. @parallel@ """ return self._state.iterate_sync(niter, _get_rng())
[docs] def iterate_async(self, niter=1): """Updates nodes asynchronously (i.e. single vertex chosen randomly), `niter` number of times. This function returns the number of nodes that changed state. """ return self._state.iterate_async(niter, _get_rng())
[docs] class EpidemicStateBase(DiscreteStateBase): def __init__(self, g, constant_beta, make_state, params, v0=None, s=None): r"""Base state for epidemic dynamics. This class it not meant to be instantiated directly.""" if s is not None: self.s = s else: self.s = g.new_vp("int32_t") if v0 is None: v0 = numpy.random.randint(0, g.num_vertices()) v0 = g.vertex(v0, use_index=False) self.s[v0] = 1 beta = params["beta"] weighted = isinstance(beta, EdgePropertyMap) if weighted: _check_prop_scalar(beta, "beta") if beta.value_type() != "double": if not constant_beta: raise ValueError("if constant_beta == False, the type of beta must be double") beta = beta.copy("double") params["beta"] = beta for p in ["r", "epsilon", "gamma", "mu"]: if p not in params: continue if not isinstance(params[p], VertexPropertyMap): params[p] = g.new_vp("double", val=params[p]) _check_prop_scalar(params[p], p) if params[p].value_type() != "double": params[p] = params[p].copy("double") self.params = params self.make_state = lambda *args: make_state(*args, weighted, constant_beta)
[docs] class SIState(EpidemicStateBase): def __init__(self, g, beta=1., r=0, exposed=False, epsilon=.1, v0=None, s=None, constant_beta=True): r"""SI compartmental epidemic model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` or :class:`~graph_tool.EdgePropertyMap` (optional, default: ``1.``) Transmission probability. If an :class:`~graph_tool.EdgePropertyMap` object is passed, it must contain the transmission probability for every edge. r : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``0.``) Spontaneous infection probability. exposed : ``boolean`` (optional, default: ``False``) If ``True``, an SEI model is simulated, with an additional "exposed" state. epsilon : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) Susceptible to exposed transition probability. This only has an effect if ``exposed=True``. v0 : ``int`` or :class:`~graph_tool.Vertex` (optional, default: ``None``) Initial infectious vertex. If not provided, and if the global state is also not provided via paramter ``s``, a random vertex will be chosen. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, all vertices will be initialized to the susceptible state. constant_beta : ``boolean`` (optional, default: ``True``) If ``True``, and ``beta`` is an edge property map, it will be assumed that the ``beta`` values do not change, such that the probability values can be pre-computed for efficiency. If ``beta`` is a ``float``, this option has no effect. Notes ----- This implements an SI epidemic process [pastor-satorras-epidemic-2015]_, where nodes in the susceptible state (value 0) are infected by neighbours in the infectious state (value 1). If a node :math:`i` is updated at time :math:`t`, the transition probabilities from state :math:`s_i(t)` to state :math:`s_i(t+1)` are given as follows: 1. If :math:`s_i(t) = 0`, we have :math:`s_i(t+1) = 1` with probability .. math:: (1-r_i)\left[1-\prod_j(1-\beta_{ij})^{A_{ij}\delta_{s_j(t),1}}\right] + r_i, otherwise :math:`s_i(t+1) = 0`. 2. If :math:`s_i(t) = 1`, we have :math:`s_i(t+1) = 1` with probability 1. If the option ``exposed == True`` is given, then the states transit first from 0 to -1 (exposed) with probability given by 1. above, and then finally from -1 to 1 with probability :math:`\epsilon_i`. Examples -------- .. testsetup:: SI gt.seed_rng(42) np.random.seed(42) .. doctest:: SI >>> g = gt.collection.data["pgp-strong-2009"] >>> state = gt.SIState(g, beta=0.01) >>> X = [] >>> for t in range(1000): ... ret = state.iterate_sync() ... X.append(state.get_state().fa.sum()) >>> figure(figsize=(6, 4)) <...> >>> plot(X) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"Infectious nodes") Text(...) >>> tight_layout() >>> savefig("SI.svg") .. figure:: SI.svg :align: center Number of infectious nodes vs. time for an SI dynamics. References ---------- .. [pastor-satorras-epidemic-2015] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani, "Epidemic processes in complex networks", Rev. Mod. Phys. 87, 925 (2015) :doi:`10.1103/RevModPhys.87.925`, :arxiv:`1408.2701` """ EpidemicStateBase.__init__(self, g, constant_beta, lib_dynamics.make_SEI_state if exposed else lib_dynamics.make_SI_state, dict(beta=beta, r=r, epsilon=epsilon), v0, s) DiscreteStateBase.__init__(self, g, self.make_state, self.params, self.s)
[docs] class SISState(DiscreteStateBase): def __init__(self, g, beta=1., gamma=.1, r=0, exposed=False, epsilon=.1, v0=None, s=None, constant_beta=True): r"""SIS compartmental epidemic model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` or :class:`~graph_tool.EdgePropertyMap` (optional, default: ``1.``) Transmission probability. gamma : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) Recovery probability. r : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``0.``) Spontaneous infection probability. exposed : ``boolean`` (optional, default: ``False``) If ``True``, an SEIS model is simulated, with an additional "exposed" state. epsilon : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) Susceptible to exposed transition probability. This only has an effect if ``exposed=True``. v0 : ``int`` or :class:`~graph_tool.Vertex` (optional, default: ``None``) Initial infectious vertex. If not provided, and if the global state is also not provided via paramter ``s``, a random vertex will be chosen. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, all vertices will be initialized to the susceptible state. constant_beta : ``boolean`` (optional, default: ``True``) If ``True``, and ``beta`` is an edge property map, it will be assumed that the ``beta`` values do not change, such that the probability values can be pre-computed for efficiency. If ``beta`` is a ``float``, this option has no effect. Notes ----- This implements an SIS epidemic process [pastor-satorras-epidemic-2015]_, where nodes in the susceptible state (value 0) are infected by neighbours in the infectious state (value 1), which can then eventually recover to a susceptible state. If a node :math:`i` is updated at time :math:`t`, the transition probabilities from state :math:`s_i(t)` to state :math:`s_i(t+1)` are given as follows: 1. If :math:`s_i(t) = 0`, we have :math:`s_i(t+1) = 1` with probability .. math:: (1-r_i)\left[1-\prod_j(1-\beta_{ij})^{A_{ij}\delta_{s_j(t),1}}\right] + r_i, otherwise :math:`s_i(t+1) = 0`. 2. If :math:`s_i(t) = 1`, we have :math:`s_i(t+1) = 0` with probability :math:`\gamma_i`, or :math:`s_i(t+1) = 1` with probability :math:`1-\gamma_i`. If the option ``exposed == True`` is given, then the states transit first from 0 to -1 (exposed) with probability given by 1. above, and then finally from -1 to 1 with probability :math:`\epsilon_i`. Examples -------- .. testsetup:: SIS gt.seed_rng(42) np.random.seed(42) .. doctest:: SIS >>> g = gt.collection.data["pgp-strong-2009"] >>> state = gt.SISState(g, beta=0.01, gamma=0.007) >>> X = [] >>> for t in range(1000): ... ret = state.iterate_sync() ... X.append(state.get_state().fa.sum()) >>> figure(figsize=(6, 4)) <...> >>> plot(X) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"Infectious nodes") Text(...) >>> tight_layout() >>> savefig("SIS.svg") .. figure:: SIS.svg :align: center Number of infectious nodes vs. time for an SIS dynamics. References ---------- .. [pastor-satorras-epidemic-2015] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani, "Epidemic processes in complex networks", Rev. Mod. Phys. 87, 925 (2015) :doi:`10.1103/RevModPhys.87.925`, :arxiv:`1408.2701` """ EpidemicStateBase.__init__(self, g, constant_beta, lib_dynamics.make_SEIS_state if exposed else lib_dynamics.make_SIS_state, dict(beta=beta, gamma=gamma, r=r, epsilon=epsilon), v0, s) DiscreteStateBase.__init__(self, g, self.make_state, self.params, self.s)
[docs] class SIRState(DiscreteStateBase): def __init__(self, g, beta=1., gamma=.1, r=0, exposed=False, epsilon=.1, v0=None, s=None, constant_beta=True): r"""SIR compartmental epidemic model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` or :class:`~graph_tool.EdgePropertyMap` (optional, default: ``1.``) Transmission probability. gamma : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) Recovery probability. r : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``0.``) Spontaneous infection probability. exposed : ``boolean`` (optional, default: ``False``) If ``True``, an SEIR model is simulated, with an additional "exposed" state. epsilon : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) Susceptible to exposed transition probability. This only has an effect if ``exposed=True``. v0 : ``int`` or :class:`~graph_tool.Vertex` (optional, default: ``None``) Initial infectious vertex. If not provided, and if the global state is also not provided via paramter ``s``, a random vertex will be chosen. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, all vertices will be initialized to the susceptible state. constant_beta : ``boolean`` (optional, default: ``True``) If ``True``, and ``beta`` is an edge property map, it will be assumed that the ``beta`` values do not change, such that the probability values can be pre-computed for efficiency. If ``beta`` is a ``float``, this option has no effect. Notes ----- This implements an SIR epidemic process [pastor-satorras-epidemic-2015]_, where nodes in the susceptible state (value 0) are infected by neighbours in the infectious state (value 1), which can then eventually recover to a recovered state (value 2). If a node :math:`i` is updated at time :math:`t`, the transition probabilities from state :math:`s_i(t)` to state :math:`s_i(t+1)` are given as follows: 1. If :math:`s_i(t) = 0`, we have :math:`s_i(t+1) = 1` with probability .. math:: (1-r_i)\left[1-\prod_j(1-\beta_{ij})^{A_{ij}\delta_{s_j(t),1}}\right] + r_i, otherwise :math:`s_i(t+1) = 0`. 2. If :math:`s_i(t) = 1`, we have :math:`s_i(t+1) = 2` with probability :math:`\gamma_i`, or :math:`s_i(t+1) = 1` with probability :math:`1-\gamma_i`. If the option ``exposed == True`` is given, then the states transit first from 0 to -1 (exposed) with probability given by 1. above, and then finally from -1 to 1 with probability :math:`\epsilon_i`. Examples -------- .. testsetup:: SIR gt.seed_rng(42) np.random.seed(42) .. doctest:: SIR >>> g = gt.collection.data["pgp-strong-2009"] >>> state = gt.SIRState(g, beta=0.01, gamma=0.0025) >>> S, X, R = [], [], [] >>> for t in range(2000): ... ret = state.iterate_sync() ... s = state.get_state().fa ... S.append((s == 0).sum()) ... X.append((s == 1).sum()) ... R.append((s == 2).sum()) >>> figure(figsize=(6, 4)) <...> >>> plot(S, label="Susceptible") [...] >>> plot(X, label="Infectious") [...] >>> plot(R, label="Recovered") [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"Number of nodes") Text(...) >>> legend(loc="best") <...> >>> tight_layout() >>> savefig("SIR.svg") .. figure:: SIR.svg :align: center Number of susceptible, infectious, and recovered nodes vs. time for an SIR dynamics. References ---------- .. [pastor-satorras-epidemic-2015] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani, "Epidemic processes in complex networks", Rev. Mod. Phys. 87, 925 (2015) :doi:`10.1103/RevModPhys.87.925`, :arxiv:`1408.2701` """ EpidemicStateBase.__init__(self, g, constant_beta, lib_dynamics.make_SEIR_state if exposed else lib_dynamics.make_SIR_state, dict(beta=beta, gamma=gamma, r=r, epsilon=epsilon), v0, s) DiscreteStateBase.__init__(self, g, self.make_state, self.params, self.s)
[docs] class SIRSState(DiscreteStateBase): def __init__(self, g, beta=1, gamma=.1, mu=.1, r=0, exposed=False, epsilon=.1, v0=None, s=None, constant_beta=True): r"""SIRS compartmental epidemic model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` or :class:`~graph_tool.EdgePropertyMap` (optional, default: ``1.``) Transmission probability. gamma : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) I to R recovery probability. mu : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) R to S recovery probability. r : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``0.``) Spontaneous infection probability. exposed : ``boolean`` (optional, default: ``False``) If ``True``, an SEIRS model is simulated, with an additional "exposed" state. epsilon : ``float`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``.1``) Susceptible to exposed transition probability. This only has an effect if ``exposed=True``. v0 : ``int`` or :class:`~graph_tool.Vertex` (optional, default: ``None``) Initial infectious vertex. If not provided, and if the global state is also not provided via paramter ``s``, a random vertex will be chosen. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, all vertices will be initialized to the susceptible state. constant_beta : ``boolean`` (optional, default: ``True``) If ``True``, and ``beta`` is an edge property map, it will be assumed that the ``beta`` values do not change, such that the probability values can be pre-computed for efficiency. If ``beta`` is a ``float``, this option has no effect. Notes ----- This implements an SIRS epidemic process [pastor-satorras-epidemic-2015]_, where nodes in the susceptible state (value 0) are infected by neighbours in the infectious state (value 1), which can then eventually recover to a recovered state (value 2), and finally back to the susceptible state. If a node :math:`i` is updated at time :math:`t`, the transition probabilities from state :math:`s_i(t)` to state :math:`s_i(t+1)` are given as follows: 1. If :math:`s_i(t) = 0`, we have :math:`s_i(t+1) = 1` with probability .. math:: (1-r_i)\left[1-\prod_j(1-\beta_{ij})^{A_{ij}\delta_{s_j(t),1}}\right] + r_i, otherwise :math:`s_i(t+1) = 0`. 2. If :math:`s_i(t) = 1`, we have :math:`s_i(t+1) = 2` with probability :math:`\gamma_i`, or :math:`s_i(t+1) = 1` with probability :math:`1-\gamma_i`. 3. If :math:`s_i(t) = 2`, we have :math:`s_i(t+1) = 1` with probability :math:`\mu_i`, or :math:`s_i(t+1) = 2` with probability :math:`1-\mu_i`. If the option ``exposed == True`` is given, then the states transit first from 0 to -1 (exposed) with probability given by 1. above, and then finally from -1 to 1 with probability :math:`\epsilon_i`. Examples -------- .. testsetup:: SIRS gt.seed_rng(42) np.random.seed(42) .. doctest:: SIRS >>> g = gt.collection.data["pgp-strong-2009"] >>> state = gt.SIRSState(g, beta=0.2, gamma=0.025, mu=0.02) >>> S, X, R = [], [], [] >>> for t in range(2000): ... ret = state.iterate_sync() ... s = state.get_state().fa ... S.append((s == 0).sum()) ... X.append((s == 1).sum()) ... R.append((s == 2).sum()) >>> figure(figsize=(6, 4)) <...> >>> plot(S, label="Susceptible") [...] >>> plot(X, label="Infectious") [...] >>> plot(R, label="Recovered") [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"Number of nodes") Text(...) >>> legend(loc="best") <...> >>> tight_layout() >>> savefig("SIRS.svg") .. figure:: SIRS.svg :align: center Number of susceptible, infectious, and recovered nodes vs. time for an SIRS dynamics. References ---------- .. [pastor-satorras-epidemic-2015] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani, "Epidemic processes in complex networks", Rev. Mod. Phys. 87, 925 (2015) :doi:`10.1103/RevModPhys.87.925`, :arxiv:`1408.2701` """ EpidemicStateBase.__init__(self, g, constant_beta, lib_dynamics.make_SEIRS_state if exposed else lib_dynamics.make_SIRS_state, dict(beta=beta, gamma=gamma, mu=mu, r=r, epsilon=epsilon), v0, s) DiscreteStateBase.__init__(self, g, self.make_state, self.params, self.s)
[docs] class VoterState(DiscreteStateBase): def __init__(self, g, q=2, r=0., s=None): r"""Generalized q-state voter model dynamics. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics q : ``int`` (optional, default: ``2``) Number of opinions. r : ``float`` (optional, default: ``0.``) Random opinion probability. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements the voter model dynamics [clifford-model-1973]_ [holley-ergodic-1075]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition probabilities from state :math:`s_i(t)` to state :math:`s_i(t+1)` are given as follows: 1. With a probability :math:`r` one of the :math:`q` opinions, :math:`x`, is chosen uniformly at random, and assigned to :math:`i`, i.e. :math:`s_i(t+1) = x`. 2. Otherwise, a random (in-)neighbour :math:`j` is chosen. and its opinion is copied, i.e. :math:`s_i(t+1) = s_j(t)`. Examples -------- .. testsetup:: voter gt.seed_rng(42) np.random.seed(42) .. doctest:: voter >>> g = gt.collection.data["pgp-strong-2009"] >>> state = gt.VoterState(g, q=4) >>> x = [[] for r in range(4)] >>> for t in range(2000): ... ret = state.iterate_sync() ... s = state.get_state().fa ... for r in range(4): ... x[r].append((s == r).sum()) >>> figure(figsize=(6, 4)) <...> >>> for r in range(4): ... plot(x[r], label="Opinion %d" % r) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"Number of nodes") Text(...) >>> legend(loc="best") <...> >>> tight_layout() >>> savefig("voter.svg") .. figure:: voter.svg :align: center Number of nodes with a given opinion vs. time for a voter model dynamics with :math:`q=4` opinions. References ---------- .. [clifford-model-1973] Clifford, P., Sudbury, A., "A model for spatial conflict", Biometrika 60, 581–588 (1973). :doi:`10.1093/biomet/60.3.581`. .. [holley-ergodic-1075] Holley, R. A., Liggett, T. M., "Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model", Ann. Probab. 3, 643–663 (1975). :doi:`10.1214/aop/1176996306`. """ if s is None: s = g.new_vp("int", vals=numpy.random.randint(0, q, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_voter_state, dict(q=q, r=r), s)
[docs] class MajorityVoterState(DiscreteStateBase): def __init__(self, g, q=2, r=0, s=None): r"""Generalized q-state majority voter model dynamics. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics q : ``int`` (optional, default: ``2``) Number of opinions. r : ``float`` (optional, default: ``0.``) Random opinion probability. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements the majority voter model dynamics [oliveira-isotropic-1992]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition probabilities from state :math:`s_i(t)` to state :math:`s_i(t+1)` are given as follows: 1. With a probability :math:`r` one of the :math:`q` opinions, :math:`x`, is chosen uniformly at random, and assigned to :math:`i`, i.e. :math:`s_i(t+1) = x`. 2. Otherwise, the majority opinion :math:`x` held by all (in-)neighbours of :math:`i` is chosen. In case of a tie between two or more opinions, a random choice between them is made. The chosen opinion is then copied, i.e. :math:`s_i(t+1) = x`. Examples -------- .. testsetup:: majority-voter gt.seed_rng(42) np.random.seed(42) .. doctest:: majority-voter >>> g = gt.collection.data["pgp-strong-2009"] >>> state = gt.MajorityVoterState(g, q=4) >>> x = [[] for r in range(4)] >>> for t in range(2000): ... ret = state.iterate_async(niter=g.num_vertices()) ... s = state.get_state().fa ... for r in range(4): ... x[r].append((s == r).sum()) >>> figure(figsize=(6, 4)) <...> >>> for r in range(4): ... plot(x[r], label="Opinion %d" % r) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"Number of nodes") Text(...) >>> legend(loc="best") <...> >>> tight_layout() >>> savefig("majority-voter.svg") .. figure:: majority-voter.svg :align: center Number of nodes with a given opinion vs. time for a majority voter model dynamics with :math:`q=4` opinions. References ---------- .. [oliveira-isotropic-1992] de Oliveira, M.J., "Isotropic majority-vote model on a square lattice", J Stat Phys 66: 273 (1992). :doi:`10.1007/BF01060069`. """ if s is None: s = g.new_vp("int", vals=numpy.random.randint(0, q, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_majority_voter_state, dict(q=q, r=r), s)
[docs] class BinaryThresholdState(DiscreteStateBase): def __init__(self, g, w=1., h=.5, r=0., s=None): r"""Generalized binary threshold dynamics. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1.``) Edge weights. If a scalar is provided, it's used for all edges. h : ``float`` (optional, default: ``.5``) Relative threshold value. r : ``float`` (optional, default: ``0.``) Input random flip probability. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements a Boolean threshold model on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1)` is given by .. math:: s_i(t+1) = \begin{cases} 1, & \text{ if } \sum_jA_{ij}w_{ij}\hat s_j(t) > h k_i,\\ 0, & \text{ otherwise.} \end{cases} where :math:`k_i=\sum_jA_{ij}` and :math:`\hat s_i(t)` are the flipped inputs sampled with probability .. math:: P(\hat s_i(t)|s_i(t)) = r^{1-\delta_{\hat s_i(t),s_i(t)}}(1-r)^{\delta_{\hat s_i(t),s_i(t)}}. Examples -------- .. testsetup:: binary-threshold gt.seed_rng(44) np.random.seed(44) .. doctest:: binary-threshold >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.BinaryThresholdState(g, r=0.25) >>> ret = state.iterate_sync(niter=1000) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="binary-threshold.svg") <...> .. figure:: binary-threshold.svg :align: center :width: 80% State of a binary threshold dynamics on a :ns:`political blog <polblogs>` network. """ if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(h, PropertyMap): if h.value_type() != "double": h = w.copy("double") else: h = g.new_vp("double", val=h) if s is None: s = g.new_vp("int", vals=numpy.random.randint(0, 2, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_binary_threshold_state, dict(w=w, h=h, r=r), s)
[docs] class IsingGlauberState(DiscreteStateBase): def __init__(self, g, beta=1., w=1., h=0., s=None): r"""Glauber dynamics of the Ising model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` (optional, default: ``1.``) Inverse temperature. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1.``) Edge interaction strength. If a scalar is provided, it's used for all edges. h : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``0.``) Vertex local field. If a scalar is provided, it's used for all vertices. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements the Glauber dynamics of the Ising model [ising-model]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1) \in \{-1,+1\}` is done with probability .. math:: P(s_i(t+1)|\boldsymbol s(t)) = \frac{\exp(\beta s_i(t+1)\sum_jA_{ij}w_{ij}s_j(t) + h_is_i(t+1))} {2\cosh(\beta\sum_jA_{ij}w_{ij}s_j(t) + h_i)}. Examples -------- .. testsetup:: glauber-ising gt.seed_rng(47) np.random.seed(47) .. doctest:: glauber-ising >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.IsingGlauberState(g, beta=.05) >>> ret = state.iterate_async(niter=1000 * g.num_vertices()) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="glauber-ising.svg") <...> .. figure:: glauber-ising.svg :align: center :width: 80% State of a Glauber Ising dynamics on a :ns:`political blog <polblogs>` network. References ---------- .. [ising-model] https://en.wikipedia.org/wiki/Ising_model """ if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(h, PropertyMap): if h.value_type() != "double": h = h.copy("double") else: h = g.new_vp("double", val=h) if s is None: s = g.new_vp("int32_t", vals=2 * numpy.random.randint(0, 2, g.num_vertices()) - 1) DiscreteStateBase.__init__(self, g, lib_dynamics.make_ising_glauber_state, dict(w=w, h=h, beta=beta), s)
[docs] class CIsingGlauberState(DiscreteStateBase): def __init__(self, g, beta=1., w=1., h=0., s=None): r"""Glauber dynamics of the continuous Ising model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` (optional, default: ``1.``) Inverse temperature. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1.``) Edge interaction strength. If a scalar is provided, it's used for all edges. h : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``0.``) Vertex local field. If a scalar is provided, it's used for all vertices. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements the Glauber dynamics of the continuous Ising model [ising-model]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1) \in [-1,+1]` is done with probability density .. math:: P(s_i(t+1)|\boldsymbol s(t)) = \frac{\exp(\beta s_i(t+1)\sum_jA_{ij}w_{ij}s_j(t) + h_is_i(t+1))} {Z(\beta\sum_jA_{ij}w_{ij}s_j(t) + h_i)}, with :math:`Z(x) = 2\sinh(x)/x`. Examples -------- .. testsetup:: glauber-cising gt.seed_rng(45) np.random.seed(45) .. doctest:: glauber-cising >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.CIsingGlauberState(g, beta=.2) >>> ret = state.iterate_async(niter=1000 * g.num_vertices()) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, vcmap=cm.magma, ... output="glauber-cising.svg") <...> .. figure:: glauber-cising.svg :align: center :width: 80% State of a continuous Glauber Ising dynamics on a :ns:`political blog <polblogs>` network. References ---------- .. [ising-model] https://en.wikipedia.org/wiki/Ising_model """ if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(h, PropertyMap): if h.value_type() != "double": h = h.copy("double") else: h = g.new_vp("double", val=h) if s is None: s = g.new_vp("double", vals=2 * numpy.random.random(g.num_vertices()) - 1) DiscreteStateBase.__init__(self, g, lib_dynamics.make_cising_glauber_state, dict(w=w, h=h, beta=beta), s, stype="double")
[docs] class IsingMetropolisState(DiscreteStateBase): def __init__(self, g, beta=1, w=1, h=0, s=None): r"""Metropolis-Hastings dynamics of the Ising model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics beta : ``float`` (optional, default: ``1.``) Inverse temperature. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1.``) Edge interaction strength. If a scalar is provided, it's used for all edges. h : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``0.``) Vertex local field. If a scalar is provided, it's used for all vertices. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements the Metropolis-Hastings dynamics [metropolis-equations-1953]_ [hastings-monte-carlo-1970]_ of the Ising model [ising-model]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1) = -s_i(t)` is done with probability .. math:: \min\left\{1, \exp\left[-2s_i(t)\left(h_i + \beta\sum_jA_{ij}w_{ij}s_j(t)\right)\right]\right\} otherwise we have :math:`s_i(t+1) = s_i(t)`. Examples -------- .. testsetup:: metropolis-ising gt.seed_rng(42 + 1) np.random.seed(42 + 1) .. doctest:: metropolis-ising >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.IsingMetropolisState(g, beta=.1) >>> ret = state.iterate_async(niter=1000 * g.num_vertices()) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="metropolis-ising.svg") <...> .. figure:: metropolis-ising.svg :align: center :width: 80% State of a Metropolis-Hastings Ising dynamics on a :ns:`political blog <polblogs>` network. References ---------- .. [ising-model] https://en.wikipedia.org/wiki/Ising_model .. [metropolis-equations-1953] Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, "Equations of State Calculations by Fast Computing Machines," Journal of Chemical Physics, 21, 1087–1092 (1953). :doi:`10.1063/1.1699114` .. [hastings-monte-carlo-1970] Hastings, W.K., "Monte Carlo Sampling Methods Using Markov Chains and Their Applications," Biometrika, 57, 97–109, (1970). :doi:`10.1093/biomet/57.1.97` """ if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(h, PropertyMap): if h.value_type() != "double": h = h.copy("double") else: h = g.new_vp("double", val=h) if s is None: s = g.new_vp("int32_t", vals=2 * numpy.random.randint(0, 2, g.num_vertices()) - 1) DiscreteStateBase.__init__(self, g, lib_dynamics.make_ising_metropolis_state, dict(w=w, h=h, beta=beta), s)
[docs] class PottsGlauberState(DiscreteStateBase): def __init__(self, g, f, w=1, h=0, s=None, shift=0): r"""Glauber dynamics of the generalized Potts model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics f : list of lists or two-dimensional :class:`numpy.ndarray` Matrix of interactions between spin values, of dimension :math:`q\times q`, where :math:`q` is the number of spins. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1.``) Edge interaction strength. If a scalar is provided, it's used for all edges. h : :class:`~graph_tool.VertexPropertyMap` or iterable or ``float`` (optional, default: ``0.``) Vertex local field. It should be property map of type ``vector<double>``. If an iterable is provided, it will be used as the field for all vertices. If a scalar is provided, it will be used for all spins values and vertices. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. shift : ``int`` (optional, default: ``0``) The node states will be shifted be assumed to lie in the range ``[-shift, q-1-shift]``, which will then be translated to the range ``[0, q-1]`` before the transition probabilities are computed. Notes ----- This implements the Glauber dynamics of the generalized Potts model [potts-model]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1) \in \{0,\dots,q-1\}` is done with probability .. math:: P(s_i(t+1)|\boldsymbol s(t)) \propto \exp\left(\sum_jA_{ij}w_{ij}f_{s_i(t+1), s_j(t)} + h^{(i)}_{s_i(t+1)}\right) Examples -------- .. testsetup:: glauber-potts gt.seed_rng(42) np.random.seed(42) .. doctest:: glauber-potts >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> f = np.eye(4) * 0.1 >>> state = gt.PottsGlauberState(g, f) >>> ret = state.iterate_async(niter=1000 * g.num_vertices()) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="glauber-potts.svg") <...> .. figure:: glauber-potts.svg :align: center :width: 80% State of a Glauber Potts dynamics with :math:`q=4` on a political blog network. References ---------- .. [potts-model] https://en.wikipedia.org/wiki/Potts_model """ f = numpy.asarray(f, dtype="double") q = f.shape[0] if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(h, PropertyMap): if h.value_type() != "vector<double>": h = h.copy("vector<double>") else: if not isinstance(h, collections.abc.Iterable): h = [h] * q h = g.new_vp("vector<double>", val=h) if s is None: s = g.new_vp("int32_t", vals=numpy.random.randint(shift, shift + q, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_potts_glauber_state, dict(f=f, w=w, h=h, shift=shift), s)
[docs] class PottsMetropolisState(DiscreteStateBase): def __init__(self, g, f, w=1, h=0, s=None, shift=0): r"""Metropolis-Hastings dynamics of the Potts model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics f : list of lists or two-dimensional :class:`numpy.ndarray` Matrix of interactions between spin values, of dimension :math:`q\times q`, where :math:`q` is the number of spins. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1.``) Edge interaction strength. If a scalar is provided, it's used for all edges. h : :class:`~graph_tool.VertexPropertyMap` or iterable or ``float`` (optional, default: ``0.``) Vertex local field. If an iterable is provided, it will be used as the field for all vertices. If a scalar is provided, it will be used for all spins values and vertices. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. shift : ``int`` (optional, default: ``0``) The node states will be shifted be assumed to lie in the range ``[-shift, q-1-shift]``, which will then be translated to the range ``[0, q-1]`` before the transition probabilities are computed. Notes ----- This implements the Metropolis-Hastings dynamics [metropolis-equations-1953]_ [hastings-monte-carlo-1970]_ of the Potts model [potts-model]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1) \in \{0,\dots,q-1\}` is done as follows: 1. A spin value :math:`r` is sampled uniformly at random from the set :math:`\{0,\dots,q-1\}`. 2. The transition :math:`s_i(t+1)=r` is made with probability .. math:: \min\left[1, \exp\left(\sum_jA_{ij}w_{ij}(f_{r, s_j(t)}-f_{s_i(t), s_j(t)}) + h^{(i)}_{r} - h^{(i)}_{s_i(t)}\right)\right] otherwise we have :math:`s_i(t+1)=s_i(t)`. Examples -------- .. testsetup:: metropolis-potts gt.seed_rng(42) np.random.seed(42) .. doctest:: metropolis-potts >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> f = np.eye(4) * 0.1 >>> state = gt.PottsGlauberState(g, f) >>> ret = state.iterate_async(niter=1000 * g.num_vertices()) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="metropolis-potts.svg") <...> .. figure:: metropolis-potts.svg :align: center :width: 80% State of a Metropolis-Hastings Potts dynamics with :math:`q=4` on a :ns:`political blog <polblogs>` network. References ---------- .. [potts-model] https://en.wikipedia.org/wiki/Potts_model .. [metropolis-equations-1953] Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, "Equations of State Calculations by Fast Computing Machines," Journal of Chemical Physics, 21, 1087–1092 (1953). :doi:`10.1063/1.1699114` .. [hastings-monte-carlo-1970] Hastings, W.K., "Monte Carlo Sampling Methods Using Markov Chains and Their Applications," Biometrika, 57, 97–109, (1970) :doi:`10.1093/biomet/57.1.97` """ f = numpy.asarray(f, dtype="double") q = f.shape[0] if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(h, PropertyMap): if h.value_type() != "vector<double>": h = h.copy("vector<double>") else: if not isinstance(h, collections.abc.Iterable): h = [h] * q h = g.new_vp("vector<double>", val=h) if s is None: s = g.new_vp("int32_t", vals=numpy.random.randint(shift, shift + q, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_potts_metropolis_state, dict(f=f, w=w, h=h, shift=shift), s)
[docs] class KirmanState(DiscreteStateBase): def __init__(self, g, d=.1, c1=.001, c2=.001, s=None): r"""Kirman's "ant colony" model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics d : ``float`` (optional, default: ``.1``) Strategy infection probability. c1 : ``float`` (optional, default: ``.001``) Spontaneous transition probability to first strategy. c2 : ``float`` (optional, default: ``.001``) Spontaneous transition probability to second strategy. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements Kirman's "ant colony" model [kirman_ants_1993]_ on a network. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1) \in \{0,1\}` is done as follows: 1. If :math:`s_i(t) = 0`, we have :math:`s_i(t) = 1` with probability :math:`c_1`. 2. Otherwise if :math:`s_i(t) = 1`, we have :math:`s_i(t) = 0` with probability :math:`c_2`. 3. Otherwise we have :math:`s_i(t+1) = 1 - s_i(t)` with probability .. math:: 1 - (1-d)^{\sum_jA_{ij}(1-\delta_{s_i(t), s_j(t)})} 4. Otherwise we have :math:`s_i(t+1) = s_i(t)`. Examples -------- .. testsetup:: kirman gt.seed_rng(42) np.random.seed(42) .. doctest:: kirman >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.KirmanState(g) >>> ret = state.iterate_sync(niter=1000) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="kirman.svg") <...> .. figure:: kirman.svg :align: center :width: 80% State of Kirman's model on a :ns:`political blog <polblogs>` network. References ---------- .. [kirman_ants_1993] A. Kirman, "Ants, Rationality, and Recruitment", The Quarterly Journal of Economics 108, 137 (1993), :doi:`10.2307/2118498`. """ if s is None: s = g.new_vp("int32_t", vals=numpy.random.randint(0, 2, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_kirman_state, dict(d=d, c1=c1, c2=c2), s)
class GeneralizedBinaryState(DiscreteStateBase): def __init__(self, g, f, r, s=None): self.f = numpy.asarray(f, dtype="float") self.r = numpy.asarray(r, dtype="float") if s is None: s = g.new_vp("int32_t", vals=numpy.random.randint(0, 2, g.num_vertices())) DiscreteStateBase.__init__(self, g, lib_dynamics.make_generalized_binary_state, dict(f=self.f, r=self.r), s)
[docs] class AxelrodState(DiscreteStateBase): def __init__(self, g, f=10, q=2, r=0, s=None): r"""Axelrod's culture dissemination model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics f : ``int`` (optional, default: ``10``) Number of features. q : ``int`` (optional, default: ``2``) Number of traits for each feature. r : ``float`` (optional, default: ``.0``) Spontaneous trait change probability. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements Axelrod's model for culture dissemination [axelrod-dissemination-1997]_. Each node has a vector state :math:`\boldsymbol s^{(i)} \in \{0,\dots,q-1\}^f`. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`\boldsymbol s^{(i)}(t+1)` is done as follows: 1. With probability :math:`r` a feature :math:`l` is chosen uniformly at random from the interval :math:`\{0,\dots,f-1\}`, and a trait :math:`r` is chosen uniformly at random from the interval :math:`\{0,\dots,q-1\}`, and the new state is set as :math:`s^{(i)}_l(t+1)=r`. 2. Otherwise, a neighbour :math:`j` is chosen uniformly at random, and we let :math:`d` be the number of equal traits across features between :math:`i` and :math:`j`, .. math:: d = \sum_{l=0}^{f-1} \delta_{s^{(i)}_l(t), s^{(j)}_l(t)}. Then with probability :math:`d/f` a trait :math:`l` is chosen uniformly at random from the set of differing features of size :math:`f-d`, i.e. :math:`\{l|s^{(i)}_l(t) \ne s^{(j)}_l(t)\}`, and the corresponding trait of :math:`j` is copied to :math:`i`: :math:`s^{(i)}_l(t+1) = s^{(j)}_l(t)`. 3. Otherwise we have :math:`\boldsymbol s_i(t+1) = \boldsymbol s_i(t)`. Examples -------- .. testsetup:: axelrod gt.seed_rng(42) np.random.seed(42) .. doctest:: axelrod >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.AxelrodState(g, f=10, q=30, r=0.005) >>> ret = state.iterate_async(niter=10000000) >>> gt.graph_draw(g, g.vp.pos, ... vertex_fill_color=gt.perfect_prop_hash([state.s])[0], ... vcmap=cm.magma, output="axelrod.svg") <...> .. figure:: axelrod.svg :align: center :width: 80% State of Axelrod's model on a :ns:`political blog <polblogs>` network. References ---------- .. [axelrod-dissemination-1997] Axelrod, R., "The Dissemination of Culture: A Model with Local Convergence and Global Polarization", Journal of Conflict Resolution, 41(2), 203–226 (1997). :doi:`10.1177/0022002797041002001` """ DiscreteStateBase.__init__(self, g, lib_dynamics.make_axelrod_state, dict(f=f, q=q, r=r), s, stype="vector<int32_t>")
[docs] class BooleanState(DiscreteStateBase): def __init__(self, g, f=None, p=.5, r=0, s=None): r"""Boolean network dynamics. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics f : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Vertex property map of type ``vector<bool>`` containing the Boolean functions. If not provided, the functions will be randomly chosen. p : ``float`` (optional, default: ``.5``) Output probability of random functions. This only has an effect if ``f is None``. r : ``float`` (optional, default: ``0.``) Input random flip probability. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements a Boolean network model. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1)` is given by .. math:: s_i(t+1) = f^{(i)}_{\sum_{j\in \partial i}2^{\hat s_j(t)}} where :math:`\partial i` are the (in-)neighbors of :math:`i`, indexed from :math:`0` to :math:`k-1`, and :math:`\hat s_i(t)` are the flipped inputs sampled with probability .. math:: P(\hat s_i(t)|s_i(t)) = r^{1-\delta_{\hat s_i(t),s_i(t)}}(1-r)^{\delta_{\hat s_i(t),s_i(t)}}. Examples -------- .. testsetup:: boolean-network gt.seed_rng(42) np.random.seed(42) .. doctest:: boolean-network >>> g = gt.random_graph(50, lambda: (2,2)) >>> state = gt.BooleanState(g) >>> ret = state.iterate_sync(niter=1000) >>> s0 = state.s.copy() >>> ret = state.iterate_sync(niter=1) >>> l = 1 >>> while any(state.s.a != s0.a): ... ret = state.iterate_sync(niter=1) ... l += 1 >>> print("Period length:", l) Period length: 9 """ if f is None: f = g.new_vp("vector<bool>") elif f.value_type() != "vector<bool>": f = f.copy("vector<bool>") DiscreteStateBase.__init__(self, g, lib_dynamics.make_boolean_state, dict(f=f, p=p, r=r), s, stype="bool")
[docs] class NormalState(DiscreteStateBase): def __init__(self, g, w=0, sigma=1, s=None): r"""Multivariate Normal distribution. Parameters ---------- g : :class:`~graph_tool.Graph` Graph represening the conditional dependencies. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``0``) Inverse covariance (i.e. coupling strength) between nodes. sigma : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``1``) Node standard deviation. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements a zero-mean multivariate Normal distribution. If a node :math:`i` is updated at time :math:`t`, the transition to state :math:`s_i(t+1)` is given by .. math:: P(s_i(t+1)|\boldsymbol s(t), \boldsymbol A, \boldsymbol w, \boldsymbol \sigma) = \frac{\exp\left[-\frac{\left(s_i(t+1)+\sigma_i^2\sum_jA_{ij}w_{ij}s_j(t)\right)^2} {2\sigma_i^2}\right]} {\sqrt{2\pi}\sigma_i} which will lead, asymptotically with :math:`t\to\infty`, to a zero-mean multivariate Normal distribution: .. math:: P(\boldsymbol s | \boldsymbol W) = \frac{\mathrm{e}^{-\frac{1}{2} {\boldsymbol x}^{\top}\boldsymbol W \boldsymbol x}} {\sqrt{(2\pi)^N |\boldsymbol W^{-1}|}}, where :math:`W_{ij}=w_{ij}` for :math:`i\neq j` and :math:`W_{ii}=1/\sigma_i^2`. Examples -------- .. testsetup:: polblogs-normal gt.seed_rng(42) np.random.seed(42) .. doctest:: polblogs-normal >>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.NormalState(g, sigma=0.001, w=-100) >>> ret = state.iterate_sync(niter=1000) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, ... output="polblogs-normal.svg") <...> .. figure:: polblogs-normal.svg :align: center :width: 80% Sample of a multivariate Normal on a :ns:`political blog <polblogs>` network. References ---------- .. [normal] https://en.wikipedia.org/wiki/Multivariate_normal_distribution """ if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(sigma, PropertyMap): if sigma.value_type() != "double": sigma = sigma.copy("double") else: sigma = g.new_vp("double", val=sigma) if s is None: s = g.new_vp("double") DiscreteStateBase.__init__(self, g, lib_dynamics.make_normal_state, dict(w=w, sigma=sigma), s, stype="double")
[docs] class LinearNormalState(DiscreteStateBase): def __init__(self, g, w=0, sigma=1, s=None): r"""Linear distrecte-time dynamical system with noise. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1``) Coupling strength of each edge. If a scalar is given, it will be used for all edges. sigma : ``float`` (optional, default: ``.0``) Stochastic noise magnitude. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements a distrecte time linear dynamical system with noise, i.e. each node has an variable :math:`s_i`, which evolves in time according to a Markov chain with transitio probabilities: .. math:: P(s_i(t+1)|\boldsymbol s, \boldsymbol A, \boldsymbol w, \sigma) = \frac{\exp\left[-\frac{\left(s_i(t+1)-\sum_{j}A_{ij}w_{ij}s_j\right)^2}{2\sigma^2}\right]}{\sqrt{2\pi}\sigma} Examples -------- .. testsetup:: linear-discrete gt.seed_rng(49) np.random.seed(49) .. doctest:: linear-discrete >>> g = gt.collection.data["karate"].copy() >>> s = g.new_vp("double", np.random.normal(0, 1, g.num_vertices())) >>> w = g.new_ep("double", vals=np.random.normal(0, .1, g.num_edges())) >>> state = gt.LinearNormalState(g, s=s, w=w) >>> ss = [] >>> for t in range(10): ... ret = state.iterate_sync() ... ss.append(state.get_state().fa.copy()) >>> figure(figsize=(6, 4)) <...> >>> for v in g.vertices(): ... plot(np.arange(len(ss)), [s[int(v)] for s in ss], "-o") [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"$s_i$") Text(...) >>> tight_layout() >>> savefig("karate-linear-discrete.svg") .. figure:: karate-linear-discrete.svg :align: center Linear dynamics on the :ns:`Karate Club <karate>` network. References ---------- .. [linear] https://en.wikipedia.org/wiki/Linear_dynamical_system """ if isinstance(w, PropertyMap): if w.value_type() != "double": w = w.copy("double") else: w = g.new_ep("double", val=w) if isinstance(sigma, PropertyMap): if sigma.value_type() != "double": sigma = sigma.copy("double") else: sigma = g.new_vp("double", val=sigma) if s is None: s = g.new_vp("double") DiscreteStateBase.__init__(self, g, lib_dynamics.make_linear_normal_state, dict(w=w, sigma=sigma), s, stype="double")
[docs] class ContinuousStateBase(object): def __init__(self, g, make_state, params, t0=0, s=None, stype="double"): r"""Base state for continuous-time dynamics. This class it not meant to be instantiated directly. """ self.g = g self.t = t0 if s is None: self.s = g.new_vp(stype) else: self.s = s.copy(stype) self.s_diff = self.s.copy() self.params = params self._state = make_state(g._Graph__graph, _prop("v", g, self.s), _prop("v", g, self.s_diff), params, _get_rng())
[docs] def copy(self): """Return a copy of the state.""" return type(self)(**self.__getstate__())
def __getstate__(self): return dict(g=self.g, s=self.s, params=self.params) def __setstate__(self, state): self.__init__(**state)
[docs] def get_state(self): r"""Returns the internal :class:`~graph_tool.VertexPropertyMap` with the current state.""" return self.s
[docs] @_parallel def get_diff(self, dt): r"""Returns the current time derivative for all the nodes. The parameter ``dt`` is the time interval in consideration, which is used only if the ODE has a stochastic component. @parallel@ """ self._state.get_diff_sync(self.t, dt, _get_rng()) return self.s_diff.fa
[docs] def solve(self, t, *args, **kwargs): r"""Integrate the system up to time ``t``. The remaining parameters are passed to :func:`scipy.integrate.solve_ivp`. This solver is not suitable for stochastic ODEs.""" if t == self.t: return if t < self.t: raise ValueError("Can't integrate backwards in time") def f(t, y): self.s.fa = y.flatten() self.t = t return self.get_diff(0) ret = scipy.integrate.solve_ivp(f, (self.t, t), self.s.fa, **dict(kwargs, vectorized=True)) self.t = ret.t[-1] self.s.fa = ret.y[:,-1] return ret
[docs] def solve_euler(self, t, dt=0.001): r"""Integrate the system up o time ``t`` using a simple Euler's method with step size ``dt``. This solver is suitable for stochastic ODEs.""" if t == self.t: return if t < self.t: raise ValueError("Can't integrate backwards in time") for t in numpy.arange(self.t, t + dt, dt): self.t = t self.s.fa += self.get_diff(dt) * dt
[docs] class LinearState(ContinuousStateBase): def __init__(self, g, w=1, sigma=0, t0=0, s=None): r"""Linear dynamical system with noise. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1``) Coupling strength of each edge. If a scalar is given, it will be used for all edges. sigma : ``float`` (optional, default: ``.0``) Stochastic noise magnitude. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements a linear dynamical system with noise, i.e. each node has an variable :math:`s_i`, which evolves in time obeying the differential equation: .. math:: \frac{\mathrm{d}s_i}{\mathrm{d}t} = \sum_{j}A_{ij}w_{ij}s_j + \sigma\xi_i(t), where :math:`\xi_i(t)` is a Gaussian noise with zero mean and unit variance (implemented according to the Itô definition). Examples -------- .. testsetup:: linear gt.seed_rng(49) np.random.seed(49) .. doctest:: linear >>> g = gt.collection.data["karate"].copy() >>> s = g.new_vp("double", np.random.normal(0, 1, g.num_vertices())) >>> w = g.new_ep("double", vals=np.random.normal(0, .1, g.num_edges())) >>> state = gt.LinearState(g, s=s, w=w) >>> ss = [] >>> ts = linspace(0, 10, 1000) >>> for t in ts: ... ret = state.solve(t, first_step=0.0001) ... ss.append(state.get_state().fa.copy()) >>> figure(figsize=(6, 4)) <...> >>> for v in g.vertices(): ... plot(ts, [s[int(v)] for s in ss]) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"$s_i$") Text(...) >>> tight_layout() >>> savefig("karate-linear.svg") .. figure:: karate-linear.svg :align: center Linear dynamics on the :ns:`Karate Club <karate>` network. References ---------- .. [linear] https://en.wikipedia.org/wiki/Linear_dynamical_system """ if not isinstance(sigma, PropertyMap): sigma = g.new_vp("double", val=sigma) elif sigma.value_type() != "double": sigma = sigma.copy("double") if not isinstance(w, PropertyMap): w = g.new_ep("double", val=w) elif w.value_type() != "double": w = w.copy("double") if s is None: s = g.new_vp("double", vals=numpy.random.random(g.num_vertices())) ContinuousStateBase.__init__(self, g, lib_dynamics.make_linear_state, dict(w=w, sigma=sigma), t0, s)
[docs] class LVState(ContinuousStateBase): def __init__(self, g, w=1, r=1, sigma=0, mig=0, t0=0, s=None): r"""Generalized Lotka-Volterra model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1``) Coupling strength of each edge. If a scalar is given, it will be used for all edges. r : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``1``) Intrinsic birth or death rates. If a scalar is given, it will be used for all nodes. sigma : ``float`` (optional, default: ``.0``) Stochastic noise magnitude. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements a generalized Lotka-Volterra (gLV) dynamical system with demographic noise, i.e. each node has an variable :math:`s_i`, which evolves in time obeying the differential equation: .. math:: \frac{\mathrm{d}s_i}{\mathrm{d}t} = s_i\left(r_i + \sum_{j}A_{ij}w_{ij}s_j\right) + \sigma\sqrt{s_i}\xi_i(t), where :math:`\xi_i(t)` is a Gaussian noise with zero mean and unit variance (implemented according to the Itô definition). Examples -------- .. testsetup:: glv gt.seed_rng(42) np.random.seed(42) .. doctest:: glv >>> g = gt.collection.data["karate"].copy() >>> s = g.new_vp("double", vals=1 + 10 * np.random.random(g.num_vertices())) >>> r = g.new_vp("double", val=-1) >>> w = g.new_ep("double", vals=np.random.normal(0, .5, g.num_edges())) >>> for v in g.vertices(): ... e = g.add_edge(v,v) ... w[e] = -.7 >>> state = gt.LVState(g, s=s, r=r, w=w) >>> ss = [] >>> ts = linspace(0, .4, 1000) >>> for t in ts: ... ret = state.solve(t, first_step=1e-6) ... ss.append(state.get_state().fa.copy()) >>> figure(figsize=(6, 4)) <...> >>> for v in g.vertices(): ... plot(ts, [s[int(v)] for s in ss]) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"$s_i$") Text(...) >>> tight_layout() >>> savefig("karate-glv.svg") .. figure:: karate-glv.svg :align: center gLV dynamics on the :ns:`Karate Club <karate>` network. References ---------- .. [glv] https://en.wikipedia.org/wiki/Generalized_Lotka%E2%80%93Volterra_equation """ if not isinstance(sigma, PropertyMap): sigma = g.new_vp("double", val=sigma) elif sigma.value_type() != "double": sigma = sigma.copy("double") if not isinstance(r, PropertyMap): r = g.new_vp("double", val=r) elif r.value_type() != "double": r = r.copy("double") if not isinstance(mig, PropertyMap): mig = g.new_vp("double", val=mig) elif mig.value_type() != "double": mig = mig.copy("double") if not isinstance(w, PropertyMap): w = g.new_ep("double", val=w) elif w.value_type() != "double": w = w.copy("double") if s is None: s = g.new_vp("double", vals=numpy.random.random(g.num_vertices())) ContinuousStateBase.__init__(self, g, lib_dynamics.make_LV_state, dict(w=w, r=r, sigma=sigma, mig=mig), t0, s)
[docs] class KuramotoState(ContinuousStateBase): def __init__(self, g, omega=1, w=1, sigma=0, t0=0, s=None): r"""The Kuramoto model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be used for the dynamics omega : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``1``) Intrinsic frequencies for each node. If a scalar is given, it will be used for all nodes. w : :class:`~graph_tool.EdgePropertyMap` or ``float`` (optional, default: ``1``) Coupling strength of each edge. If a scalar is given, it will be used for all edges. sigma : :class:`~graph_tool.VertexPropertyMap` or ``float`` (optional, default: ``0``) Stochastic noise magnitude for each node. If a scalar is given, it will be used for all nodes. s : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial global state. If not provided, a random state will be chosen. Notes ----- This implements Kuramoto's model for synchronization [kuramoto_self-entrainment_1975]_ [rodrigues_kuramoto_2016]_. Each node has an angle :math:`\theta_i`, which evolves in time obeying the differential equation: .. math:: \frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega_i + \sum_{j}A_{ij}w_{ij}\sin(\theta_j-\theta_i) + \sigma\xi_i(t), where :math:`\xi_i(t)` is a Gaussian noise with zero mean and unit variance. Examples -------- .. testsetup:: kuramoto gt.seed_rng(49) np.random.seed(49) .. doctest:: kuramoto >>> g = gt.collection.data["karate"] >>> omega = g.new_vp("double", np.random.normal(0, 1, g.num_vertices())) >>> state = gt.KuramotoState(g, omega=omega, w=1.5) >>> thetas = [] >>> ts = linspace(0, 40, 1000) >>> for t in ts: ... ret = state.solve(t, first_step=0.0001) ... thetas.append(state.get_state().fa % (2 * pi)) >>> figure(figsize=(6, 4)) <...> >>> for v in g.vertices(): ... plot(ts, [t[int(v)] - t.mean() for t in thetas]) [...] >>> xlabel(r"Time") Text(...) >>> ylabel(r"$\theta_i - \left<\theta\right>$") Text(...) >>> tight_layout() >>> savefig("karate-kuramoto.svg") .. figure:: karate-kuramoto.svg :align: center Kuramoto oscillator dynamics on the :ns:`Karate Club <karate>` network. References ---------- .. [kuramoto_self-entrainment_1975] Y. Kuramoto, "Self-entrainment of a population of coupled non-linear oscillators", International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol 39. Springer, Berlin, Heidelberg (1975), :doi:`10.1007/BFb0013365` .. [rodrigues_kuramoto_2016] Francisco A. Rodrigues, Thomas K. DM.Peron, Peng Ji, Jürgen Kurth, "The Kuramoto model in complex networks", Physics Reports 610 1-98 (2016) :doi:`10.1016/j.physrep.2015.10.008`, :arxiv:`1511.07139` """ if not isinstance(omega, PropertyMap): omega = g.new_vp("double", val=omega) elif omega.value_type() != "double": omega = omega.copy("double") if not isinstance(sigma, PropertyMap): sigma = g.new_vp("double", val=sigma) elif sigma.value_type() != "double": sigma = sigma.copy("double") if not isinstance(w, PropertyMap): w = g.new_ep("double", val=w) elif w.value_type() != "double": w = w.copy("double") if s is None: s = g.new_vp("double", vals=2 * numpy.pi * numpy.random.random(g.num_vertices())) ContinuousStateBase.__init__(self, g, lib_dynamics.make_kuramoto_state, dict(omega=omega, w=w, sigma=sigma), t0, s)
[docs] def get_r_phi(self): r"""Returns the phase coherence :math:`r` and average phase :math:`\phi`, defined as .. math:: re^{i\phi} = \frac{1}{N}\sum_j e^{i\theta_j}. """ z = numpy.exp(self.s.fa * 1j).mean() return float(numpy.abs(z)), float(numpy.angle(z))