Source code for graph_tool.inference.ranked

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2025 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

from .. import Graph, GraphView, _get_rng, _prop, PropertyMap, \
    edge_endpoint_property
from . blockmodel import BlockState
from . base_states import *
from . util import *

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_inference as libinference")

import numpy as np
import math
from scipy.stats import rankdata

[docs] @entropy_state_signature class RankedBlockState(MCMCState, MultiflipMCMCState, MultilevelMCMCState, GibbsMCMCState, DrawBlockState): r"""Obtain the ordered partition of a network according to the ranked stochastic block model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modelled. b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``) Initial partition. If not supplied, a partition into a single group will be used. u : :class:`~graph_tool.PropertyMap` or iterable (optional, default: ``None``) Ordering of the group labels. It should contain a map from each group label to the unit interval :math:`[0,1]`, inidicating how the groups should be ordered. If not supplied, the numeric values of the group lalbels will be used to initialize the ordering. entropy_args: ``dict`` (optional, default: ``{}``) Override default arguments for :meth:`~RankedBlockState.entropy()` method and releated operations. References ---------- .. [peixoto-ordered-2022] Tiago P. Peixoto, "Ordered community detection in directed networks", Phys. Rev. E 106, 024305 (2022), :doi:`10.1103/PhysRevE.106.024305`, :arxiv:`2203.16460` """ def __init__(self, g, b=None, u=None, entropy_args={}, **kwargs): EntropyState.__init__(self, entropy_args=entropy_args) self.g = g self.ustate = BlockState(self.g, b=b, **kwargs) self.b = self.ustate.b if u is None: u = self.ustate.bg.new_vp("double") u.fa = np.linspace(0.1, .9, len(u.fa)) if isinstance(u, PropertyMap): u = self.ustate.bg.own_property(u) else: u = self.ustate.bg.new_vp("double", vals=u) self.u = u self._state = libinference.make_ranked_state(self.ustate._state, self) self.eweight = self.ustate.eweight self.vweight = self.ustate.vweight self.is_weighted = True self.overlap = False def __copy__(self): return self.copy()
[docs] def copy(self, **kwargs): r"""Copies the state. The parameters override the state properties, and have the same meaning as in the constructor.""" args = self.__getstate__() args.update(**kwargs) return RankedBlockState(**args)
def __getstate__(self): state = EntropyState.__getstate__(self) state = dict(state, **self.ustate.__getstate__()) return dict(state, u=self.u.a.copy()) def __setstate__(self, state): self.__init__(**state) def __repr__(self): return "<RankedBlockState object with %d blocks, %d upstream, %d downstream, and %d lateral edges,%s for graph %s, at 0x%x>" % \ (self.get_B(), self.get_Es()[0], self.get_Es()[2], self.get_Es()[1], " degree-corrected," if self.ustate.deg_corr else "", str(self.g), id(self)) def _couple_state(self, state, entropy_args): if state is None: self._coupled_state = None self._state.decouple_state() else: self._coupled_state = (state, entropy_args) eargs = self._get_entropy_args(entropy_args) self._state.couple_state(state._state, eargs)
[docs] def get_block_state(self, b=None, vweight=None, deg_corr=False, **kwargs): r"""Returns a :class:`~graph_tool.inference.BlockState` corresponding to the block graph (i.e. the blocks of the current state become the nodes). """ bstate = self.ustate.get_block_state(b=b, vweight=vweight, deg_corr=deg_corr, **kwargs) bg = GraphView(bstate.g, directed=False) return bstate.copy(g=bg)
[docs] def get_blocks(self): r"""Returns the property map which contains the block labels for each vertex.""" return self.b
[docs] def get_state(self): """Alias to :meth:`~RankedBlockState.get_blocks`.""" return self.g.own_property(self.ustate.get_blocks())
[docs] def get_block_order(self): """Returns an array indexed by the group label containing its rank order.""" idx = self.ustate.wr.fa == 0 u = self.u.fa.copy() u[idx] = 1 return rankdata(u, method='ordinal') - 1
[docs] def get_vertex_order(self): """Returns a vertex :class:`~graph_tool.PropertyMap` with the rank order for every vertex.""" u = self.b.copy() pmap(u, self.get_block_order()) return u
[docs] def get_vertex_position(self): """Returns a vertex :class:`~graph_tool.PropertyMap` with vertex positions in the unit interval :math:`[0,1]`.""" u = self.get_vertex_order() u = u.copy("double") u.fa /= max((u.fa.max(), 1)) return u
[docs] def collect_vertex_marginals(self, p=None, b=None, update=1): r"""Collect the vertex marginal histogram, which counts the number of times a node was assigned to a given block. Parameters ---------- p : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Vertex property map with vector-type values, storing the previous block membership counts. If not provided, an empty histogram will be created. b : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Vertex property map with group partition. If not provided, the state's partition will be used. update : int (optional, default: ``1``) Each call increases the current count by the amount given by this parameter. Returns ------- p : :class:`~graph_tool.VertexPropertyMap` Vertex property map with vector-type values, storing the accumulated block membership counts. """ if p is None: p = self.g.new_vp("vector<int>") if b is None: b = self.get_vertex_order() libinference.vertex_marginals(self.g._Graph__graph, _prop("v", self.g, b), _prop("v", self.g, p), update) return p
[docs] def get_edge_dir(self): """Return an edge :class:`~graph_tool.PropertyMap` containing the edge direction: ``-1`` (downstream), ``0`` (lateral), ``+1`` (upstream). """ u = self.b.copy("double") pmap(u, self.u) u_s = edge_endpoint_property(self.g, u, "source") u_t = edge_endpoint_property(self.g, u, "target") edir = self.g.new_ep("int") edir.a = u_s.a < u_t.a idx = edir.a == 0 edir.a[idx] = (u_s.a > u_t.a)[idx] edir.a[idx] *= -1 return edir
[docs] def get_N(self): """Return the number of nodes.""" return self.ustate.get_N()
[docs] def get_E(self): """Return the number of edges.""" return self.ustate.get_E()
[docs] def get_Es(self): """Return the number of dowstream, lateral, and upstream edges.""" return self._state.get_Es()
[docs] def get_B(self): r"Returns the total number of blocks." return self.ustate.get_nonempty_B()
[docs] def get_nonempty_B(self): r"Alias to :meth:`~RankedBlockState.get_B`." return self.get_B()
[docs] def get_Be(self): r"""Returns the effective number of blocks, defined as :math:`e^{H}`, with :math:`H=-\sum_r\frac{n_r}{N}\ln \frac{n_r}{N}`, where :math:`n_r` is the number of nodes in group r. """ return self.ustate.get_Be()
[docs] def virtual_vertex_move(self, v, s, **kwargs): r"""Computes the entropy difference if vertex ``v`` is moved to block ``s``. The remaining parameters are the same as in :meth:`~graph_tool.inference.RankedBlockState.entropy`.""" return self._state.virtual_move(int(v), self.b[v], s, self._get_entropy_args(dict(self._entropy_args, **kwargs)))
[docs] def move_vertex(self, v, s): r"""Move vertex ``v`` to block ``s``.""" self._state.move_vertex(int(v), int(s))
@copy_state_wrap def _entropy(self, adjacency=True, dl=True, partition_dl=True, degree_dl=True, degree_dl_kind="distributed", edges_dl=True, dense=False, multigraph=True, deg_entropy=True, recs=True, recs_dl=True, beta_dl=1., Bfield=True, exact=True, **kwargs): r"""Return the description length (negative joint log-likelihood). See :meth:`BlockState.entropy` for documentation.""" eargs = self._get_entropy_args(locals()) S = self._state.entropy(eargs, False) if len(kwargs) > 0: raise ValueError("unrecognized keyword arguments: " + str(list(kwargs.keys()))) return S
[docs] def multiflip_mcmc_sweep(self, pmovelabel=1, **kwargs): """Call :meth:`MultiflipMCMCState.multiflip_mcmc_sweep` with default parameter ``pmovelabel=1``.`""" return super().multiflip_mcmc_sweep(pmovelabel=pmovelabel, **kwargs)
def _gen_eargs(self, args): return libinference.entropy_args() def _get_entropy_args(self, kwargs, consume=False): if not consume: kwargs = kwargs.copy() deg_dl_kind = kwargs.get("degree_dl_kind", self._entropy_args["degree_dl_kind"]) if deg_dl_kind == "entropy": kind = libinference.deg_dl_kind.ent elif deg_dl_kind == "uniform": kind = libinference.deg_dl_kind.uniform elif deg_dl_kind == "distributed": kind = libinference.deg_dl_kind.dist kwargs["degree_dl_kind"] = kind dl = kwargs.get("dl", self._entropy_args["dl"]) ea = super()._get_entropy_args(kwargs, consume) if not dl: ea.partition_dl = False ea.degree_dl = False ea.edges_dl = False ea.recs_dl = False return ea
[docs] def sample_graph(self, **kwargs): r"""Sample a new graph from the fitted model. See :meth:`BlockState.sample_graph` for documentation.""" return self.ustate.sample_graph(**kwargs)
def _mcmc_sweep_dispatch(self, mcmc_state): return libinference.ranked_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _multiflip_mcmc_sweep_dispatch(self, mcmc_state): return libinference.ranked_multiflip_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _multilevel_mcmc_sweep_dispatch(self, mcmc_state): return libinference.ranked_multilevel_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _gibbs_sweep_dispatch(self, gibbs_state): return libinference.ranked_gibbs_sweep(gibbs_state, self._state, _get_rng())
[docs] def get_edge_colors(self): """Return :class:`~graph_tool.EdgePropertyMap` containing the edge colors according to their rank direction: upstream (blue), downstream (red), lateral (grey). """ edir = self.get_edge_dir() ecolor = self.g.new_ep("vector<double>") for e in self.g.edges(): if edir[e] == 0: ecolor[e] = (0.1, 0.1, 0.3, 0.6) elif edir[e] == 1: ecolor[e] = (0.2823529411764706, 0.47058823529411764, 0.8156862745098039, .6) else: ecolor[e] = (0.8392156862745098, 0.37254901960784315, 0.37254901960784315, .8) return ecolor
[docs] def draw(self, **kwargs): r"""Convenience wrapper to :func:`~graph_tool.draw.graph_draw` that draws the state of the graph as colors on the vertices and edges.""" edir = self.get_edge_dir() ecolor = self.get_edge_colors() Es = self.get_Es() if Es[-1] < Es[0]: edir.a *= -1 edir.a[edir.a == 0] = 2 return super().draw(**dict(dict(edge_gradient=[], edge_color=ecolor, eorder=edir), **kwargs))