#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2024 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from .. import Graph, GraphView, _get_rng, _prop, PropertyMap, \
perfect_prop_hash, Vector_size_t, group_vector_property
from . blockmodel import DictState
from . util import *
import numpy as np
from . base_states import *
from .. dl_import import dl_import
dl_import("from . import libgraph_tool_inference as libinference")
[docs]
@entropy_state_signature
class NormCutState(MCMCState, MultiflipMCMCState, MultilevelMCMCState,
GibbsMCMCState, DrawBlockState):
r"""Obtain the partition of a network according to the normalized cut.
.. warning::
Do not use this approach in the analysis of networks without
understanding the consequences. This algorithm is included only for
comparison purposes. In general, the inference-based approaches based on
:class:`~graph_tool.inference.BlockState`,
:class:`~graph_tool.inference.NestedBlockState`, and
:class:`~graph_tool.inference.PPBlockState` should be
universally preferred.
Parameters
----------
g : :class:`~graph_tool.Graph`
Graph to be partitioned.
b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
Initial partition. If not supplied, a partition into a single group will
be used.
"""
def __init__(self, g, b=None):
EntropyState.__init__(self)
self.g = GraphView(g, directed=False)
if b is None:
self.b = self.g.new_vp("int32_t")
elif isinstance(b, PropertyMap):
self.b = b.copy("int32_t")
else:
self.b = self.g.new_vp("int32_t", vals=b)
self.er = Vector_size_t()
self.err = Vector_size_t()
self.bg = self.g
self._abg = self.bg._get_any()
self._state = libinference.make_norm_cut_state(self)
def __copy__(self):
return self.copy()
def __deepcopy__(self, memo):
g = copy.deepcopy(self.g, memo)
b = copy.deepcopy(self.b, memo)
return self.copy(g=g, b=b)
[docs]
def copy(self, g=None, b=None):
r"""Copies the state. The parameters override the state properties, and
have the same meaning as in the constructor."""
return NormCutState(g=g if g is not None else self.g,
b=b if b is not None else self.b)
def __getstate__(self):
return dict(g=self.g, b=self.b)
def __setstate__(self, state):
self.__init__(**state)
def __repr__(self):
return "<NormCutState object with %d blocks, for graph %s, at 0x%x>" % \
(self.get_B(), str(self.g), id(self))
def _gen_eargs(self, args):
return libinference.modularity_entropy_args()
[docs]
def get_B(self):
r"Returns the total number of blocks."
return len(np.unique(self.b.fa))
[docs]
def get_Be(self):
r"""Returns the effective number of blocks, defined as :math:`e^{H}`, with
:math:`H=-\sum_r\frac{n_r}{N}\ln \frac{n_r}{N}`, where :math:`n_r` is
the number of nodes in group r.
"""
w = np.array(np.bincount(self.b.fa), dtype="double")
w = w[w>0]
w /= w.sum()
return np.exp(-(w*log(w)).sum())
@copy_state_wrap
def _entropy(self):
r"""Return the normalized cut. See :meth:`~NormCutState.norm_cut`."""
eargs = self._get_entropy_args(locals(), ignore=["self", "kwargs"])
return self._state.entropy(eargs)
def _get_entropy_args(self, kwargs, ignore=None):
kwargs = dict(self._entropy_args, **kwargs)
if ignore is not None:
for a in ignore:
kwargs.pop(a, None)
ea = libinference.norm_cut_entropy_args()
if len(kwargs) > 0:
raise ValueError("unrecognized entropy arguments: " +
str(list(kwargs.keys())))
return ea
[docs]
def norm_cut(self):
r"""Return the normalized cut.
Notes
-----
The normalized cut is defined as
.. math::
B - \sum_r \frac{e_{rr}}{e_r}
Where :math:`B` is the number of groups, :math:`e_{rr}` is twice
the number of edges between nodes of group :math:`r`, and :math:`e_r` is
the sum of degrees of nodes in group :math:`r`.
"""
return self.entropy()
def _mcmc_sweep_dispatch(self, mcmc_state):
return libinference.norm_cut_mcmc_sweep(mcmc_state, self._state,
_get_rng())
def _multiflip_mcmc_sweep_dispatch(self, mcmc_state):
return libinference.norm_cut_multiflip_mcmc_sweep(mcmc_state,
self._state,
_get_rng())
def _multilevel_mcmc_sweep_dispatch(self, mcmc_state):
return libinference.norm_cut_multilevel_mcmc_sweep(mcmc_state,
self._state,
_get_rng())
def _gibbs_sweep_dispatch(self, gibbs_state):
return libinference.norm_cut_gibbs_sweep(gibbs_state, self._state,
_get_rng())