Source code for graph_tool.inference.norm_cut

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2024 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

from .. import Graph, GraphView, _get_rng, _prop, PropertyMap, \
    perfect_prop_hash, Vector_size_t, group_vector_property
from . blockmodel import DictState
from . util import *
import numpy as np

from . base_states import *

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_inference as libinference")

[docs] @entropy_state_signature class NormCutState(MCMCState, MultiflipMCMCState, MultilevelMCMCState, GibbsMCMCState, DrawBlockState): r"""Obtain the partition of a network according to the normalized cut. .. warning:: Do not use this approach in the analysis of networks without understanding the consequences. This algorithm is included only for comparison purposes. In general, the inference-based approaches based on :class:`~graph_tool.inference.BlockState`, :class:`~graph_tool.inference.NestedBlockState`, and :class:`~graph_tool.inference.PPBlockState` should be universally preferred. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be partitioned. b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``) Initial partition. If not supplied, a partition into a single group will be used. """ def __init__(self, g, b=None): EntropyState.__init__(self) self.g = GraphView(g, directed=False) if b is None: self.b = self.g.new_vp("int32_t") elif isinstance(b, PropertyMap): self.b = b.copy("int32_t") else: self.b = self.g.new_vp("int32_t", vals=b) self.er = Vector_size_t() self.err = Vector_size_t() self.bg = self.g self._abg = self.bg._get_any() self._state = libinference.make_norm_cut_state(self) def __copy__(self): return self.copy() def __deepcopy__(self, memo): g = copy.deepcopy(self.g, memo) b = copy.deepcopy(self.b, memo) return self.copy(g=g, b=b)
[docs] def copy(self, g=None, b=None): r"""Copies the state. The parameters override the state properties, and have the same meaning as in the constructor.""" return NormCutState(g=g if g is not None else self.g, b=b if b is not None else self.b)
def __getstate__(self): return dict(g=self.g, b=self.b) def __setstate__(self, state): self.__init__(**state) def __repr__(self): return "<NormCutState object with %d blocks, for graph %s, at 0x%x>" % \ (self.get_B(), str(self.g), id(self)) def _gen_eargs(self, args): return libinference.modularity_entropy_args()
[docs] def get_B(self): r"Returns the total number of blocks." return len(np.unique(self.b.fa))
[docs] def get_Be(self): r"""Returns the effective number of blocks, defined as :math:`e^{H}`, with :math:`H=-\sum_r\frac{n_r}{N}\ln \frac{n_r}{N}`, where :math:`n_r` is the number of nodes in group r. """ w = np.array(np.bincount(self.b.fa), dtype="double") w = w[w>0] w /= w.sum() return np.exp(-(w*log(w)).sum())
@copy_state_wrap def _entropy(self): r"""Return the normalized cut. See :meth:`~NormCutState.norm_cut`.""" eargs = self._get_entropy_args(locals(), ignore=["self", "kwargs"]) return self._state.entropy(eargs) def _get_entropy_args(self, kwargs, ignore=None): kwargs = dict(self._entropy_args, **kwargs) if ignore is not None: for a in ignore: kwargs.pop(a, None) ea = libinference.norm_cut_entropy_args() if len(kwargs) > 0: raise ValueError("unrecognized entropy arguments: " + str(list(kwargs.keys()))) return ea
[docs] def norm_cut(self): r"""Return the normalized cut. Notes ----- The normalized cut is defined as .. math:: B - \sum_r \frac{e_{rr}}{e_r} Where :math:`B` is the number of groups, :math:`e_{rr}` is twice the number of edges between nodes of group :math:`r`, and :math:`e_r` is the sum of degrees of nodes in group :math:`r`. """ return self.entropy()
def _mcmc_sweep_dispatch(self, mcmc_state): return libinference.norm_cut_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _multiflip_mcmc_sweep_dispatch(self, mcmc_state): return libinference.norm_cut_multiflip_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _multilevel_mcmc_sweep_dispatch(self, mcmc_state): return libinference.norm_cut_multilevel_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _gibbs_sweep_dispatch(self, gibbs_state): return libinference.norm_cut_gibbs_sweep(gibbs_state, self._state, _get_rng())