Source code for graph_tool.generation

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2024 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.s

"""
``graph_tool.generation``
-------------------------

This module contains functions that generate different kinds of graphs.

Random graph generation
+++++++++++++++++++++++

.. autosummary::
   :nosignatures:
   :toctree: autosummary

   random_graph
   random_rewire
   add_random_edges
   remove_random_edges
   generate_triadic_closure
   price_network

Stochastic block models
+++++++++++++++++++++++

.. autosummary::
   :nosignatures:
   :toctree: autosummary

   generate_sbm
   generate_maxent_sbm
   solve_sbm_fugacities

Geometric models
++++++++++++++++

.. autosummary::
   :nosignatures:
   :toctree: autosummary

   generate_knn
   geometric_graph
   triangulation

Graph transformations
+++++++++++++++++++++

.. autosummary::
   :nosignatures:
   :toctree: autosummary

   predecessor_tree
   line_graph
   condensation_graph
   contract_parallel_edges
   remove_parallel_edges
   expand_parallel_edges
   label_parallel_edges
   remove_self_loops
   label_self_loops

Graph operations
++++++++++++++++

.. autosummary::
   :nosignatures:
   :toctree: autosummary

   graph_union

Deterministic graphs
++++++++++++++++++++

.. autosummary::
   :nosignatures:
   :toctree: autosummary

   lattice
   complete_graph
   circular_graph

"""

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_generation")

from .. import Graph, GraphView, _check_prop_scalar, _prop, _limit_args, \
    _gt_type, _get_rng, Vector_double, VertexPropertyMap, _parallel
import inspect
import types
import numpy
import numpy.random
import scipy.optimize
import scipy.sparse

__all__ = ["random_graph", "random_rewire", "add_random_edges",
           "remove_random_edges", "generate_sbm", "solve_sbm_fugacities",
           "generate_maxent_sbm", "generate_knn", "generate_triadic_closure",
           "predecessor_tree", "line_graph", "graph_union", "triangulation",
           "lattice", "geometric_graph", "price_network", "complete_graph",
           "circular_graph", "condensation_graph", "contract_parallel_edges",
           "expand_parallel_edges", "remove_parallel_edges", "remove_self_loops",
           "label_parallel_edges", "label_self_loops", "remove_labeled_edges"]

[docs] def random_graph(N, deg_sampler, directed=True, parallel_edges=False, self_loops=False, block_membership=None, block_type="int", degree_block=False, random=True, verbose=False, **kwargs): r""" Generate a random graph, with a given degree distribution and (optionally) vertex-vertex correlation. The graph will be randomized via the :func:`~graph_tool.generation.random_rewire` function, and any remaining parameters will be passed to that function. Please read its documentation for all the options regarding the different statistical models which can be chosen. Parameters ---------- N : int Number of vertices in the graph. deg_sampler : function A degree sampler function which is called without arguments, and returns a tuple of ints representing the in and out-degree of a given vertex (or a single int for undirected graphs, representing the out-degree). This function is called once per vertex, but may be called more times, if the degree sequence cannot be used to build a graph. Optionally, you can also pass a function which receives one or two arguments. If ``block_membership is None``, the single argument passed will be the index of the vertex which will receive the degree. If ``block_membership is not None``, the first value passed will be the vertex index, and the second will be the block value of the vertex. directed : bool (optional, default: ``True``) Whether the generated graph should be directed. parallel_edges : bool (optional, default: ``False``) If ``True``, parallel edges are allowed. self_loops : bool (optional, default: ``False``) If ``True``, self-loops are allowed. block_membership : list or :class:`numpy.ndarray` or function (optional, default: ``None``) If supplied, the graph will be sampled from a stochastic blockmodel ensemble, and this parameter specifies the block membership of the vertices, which will be passed to the :func:`~graph_tool.generation.random_rewire` function. If the value is a list or a :class:`numpy.ndarray`, it must have ``len(block_membership) == N``, and the values will define to which block each vertex belongs. If this value is a function, it will be used to sample the block types. It must be callable either with no arguments or with a single argument which will be the vertex index. In either case it must return a type compatible with the ``block_type`` parameter. See the documentation for the ``vertex_corr`` parameter of the :func:`~graph_tool.generation.random_rewire` function which specifies the correlation matrix. block_type : string (optional, default: ``"int"``) Value type of block labels. Valid only if ``block_membership is not None``. degree_block : bool (optional, default: ``False``) If ``True``, the degree of each vertex will be appended to block labels when constructing the blockmodel, such that the resulting block type will be a pair :math:`(r, k)`, where :math:`r` is the original block label. random : bool (optional, default: ``True``) If ``True``, the returned graph is randomized. Otherwise a deterministic placement of the edges will be used. verbose : bool (optional, default: ``False``) If ``True``, verbose information is displayed. Returns ------- random_graph : :class:`~graph_tool.Graph` The generated graph. blocks : :class:`~graph_tool.VertexPropertyMap` A vertex property map with the block values. This is only returned if ``block_membership is not None``. See Also -------- random_rewire: in-place graph shuffling Notes ----- The algorithm makes sure the degree sequence is graphical (i.e. realizable) and keeps re-sampling the degrees if is not. With a valid degree sequence, the edges are placed deterministically, and later the graph is shuffled with the :func:`~graph_tool.generation.random_rewire` function, with all remaining parameters passed to it. The complexity is :math:`O(V + E)` if parallel edges are allowed, and :math:`O(V + E \times\text{n-iter})` if parallel edges are not allowed. .. note :: If ``parallel_edges == False`` this algorithm only guarantees that the returned graph will be a random sample from the desired ensemble if ``n_iter`` is sufficiently large. The algorithm implements an efficient Markov chain based on edge swaps, with a mixing time which depends on the degree distribution and correlations desired. If degree correlations are provided, the mixing time tends to be larger. Examples -------- .. testcode:: :hide: import numpy.random from pylab import * np.random.seed(43) gt.seed_rng(42) This is a degree sampler which uses rejection sampling to sample from the distribution :math:`P(k)\propto 1/k`, up to a maximum. >>> def sample_k(max): ... accept = False ... while not accept: ... k = np.random.randint(1,max+1) ... accept = np.random.random() < 1.0/k ... return k The following generates a random undirected graph with degree distribution :math:`P(k)\propto 1/k` (with k_max=40) and an *assortative* degree correlation of the form: .. math:: P(i,k) \propto \frac{1}{1+|i-k|} >>> g = gt.random_graph(1000, lambda: sample_k(40), model="probabilistic-configuration", ... edge_probs=lambda i, k: 1.0 / (1 + abs(i - k)), directed=False, ... n_iter=100) The following samples an in,out-degree pair from the joint distribution: .. math:: p(j,k) = \frac{1}{2}\frac{e^{-m_1}m_1^j}{j!}\frac{e^{-m_1}m_1^k}{k!} + \frac{1}{2}\frac{e^{-m_2}m_2^j}{j!}\frac{e^{-m_2}m_2^k}{k!} with :math:`m_1 = 4` and :math:`m_2 = 20`. >>> def deg_sample(): ... if random() > 0.5: ... return np.random.poisson(4), np.random.poisson(4) ... else: ... return np.random.poisson(20), np.random.poisson(20) ... The following generates a random directed graph with this distribution, and plots the combined degree correlation. >>> g = gt.random_graph(20000, deg_sample) >>> >>> hist = gt.combined_corr_hist(g, "in", "out") >>> >>> figure() <...> >>> imshow(hist[0].T, interpolation="nearest", origin="lower") <...> >>> colorbar() <...> >>> xlabel("in-degree") Text(...) >>> ylabel("out-degree") Text(...) >>> tight_layout() >>> savefig("combined-deg-hist.svg") .. figure:: combined-deg-hist.* :align: center Combined degree histogram. A correlated directed graph can be build as follows. Consider the following degree correlation: .. math:: P(j',k'|j,k)=\frac{e^{-k}k^{j'}}{j'!} \frac{e^{-(20-j)}(20-j)^{k'}}{k'!} i.e., the in->out correlation is "disassortative", the out->in correlation is "assortative", and everything else is uncorrelated. We will use a flat degree distribution in the range [1,20). >>> p = scipy.stats.poisson >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)), ... model="probabilistic-configuration", ... edge_probs=lambda a,b: (p.pmf(a[0], b[1]) * ... p.pmf(a[1], 20 - b[0])), ... n_iter=100) Lets plot the average degree correlations to check. >>> figure(figsize=(8,3)) <...> >>> corr = gt.avg_neighbor_corr(g, "in", "in") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{in}\right>$ vs in") <...> >>> corr = gt.avg_neighbor_corr(g, "in", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{out}\right>$ vs in") <...> >>> corr = gt.avg_neighbor_corr(g, "out", "in") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{in}\right>$ vs out") <...> >>> corr = gt.avg_neighbor_corr(g, "out", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{out}\right>$ vs out") <...> >>> legend(loc='center left', bbox_to_anchor=(1, 0.5)) <...> >>> xlabel("Source degree") Text(...) >>> ylabel("Average target degree") Text(...) >>> tight_layout() >>> box = gca().get_position() >>> gca().set_position([box.x0, box.y0, box.width * 0.7, box.height]) >>> savefig("deg-corr-dir.svg") .. figure:: deg-corr-dir.* :align: center Average nearest neighbor correlations. **Stochastic blockmodels** The following example shows how a stochastic blockmodel [holland-stochastic-1983]_ [karrer-stochastic-2011]_ can be generated. We will consider a system of 10 blocks, which form communities. The connection probability will be given by >>> def prob(a, b): ... if a == b: ... return 0.999 ... else: ... return 0.001 The blockmodel can be generated as follows. >>> g, bm = gt.random_graph(2000, lambda: poisson(10), directed=False, ... model="blockmodel", ... block_membership=lambda: randint(10), ... edge_probs=prob) >>> gt.graph_draw(g, vertex_fill_color=bm, edge_color="black", output="blockmodel.pdf") <...> .. testcleanup:: conv_png("blockmodel.pdf") .. figure:: blockmodel.png :align: center :width: 80% Simple blockmodel with 10 blocks. References ---------- .. [metropolis-equations-1953] Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics 21 (6): 1087-1092 (1953). :doi:`10.1063/1.1699114` .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods Using Markov Chains and Their Applications". Biometrika 57 (1): 97-109 (1970). :doi:`10.1093/biomet/57.1.97` .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt, "Stochastic blockmodels: First steps," Social Networks 5, no. 2: 109-13 (1983) :doi:`10.1016/0378-8733(83)90021-7` .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic blockmodels and community structure in networks," Physical Review E 83, no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926` """ g = Graph() if (type(block_membership) is types.FunctionType or type(block_membership) is types.LambdaType): btype = block_type bm = [] if len(inspect.getfullargspec(block_membership)[0]) == 0: for i in range(N): bm.append(block_membership()) else: for i in range(N): bm.append(block_membership(i)) block_membership = bm elif block_membership is not None: btype = _gt_type(block_membership[0]) if len(inspect.getfullargspec(deg_sampler)[0]) > 0: if block_membership is not None: sampler = lambda i: deg_sampler(i, block_membership[i]) else: sampler = deg_sampler else: sampler = lambda i: deg_sampler() if not directed: def sampler_wrap(*args): k = sampler(*args) try: return int(k) except: raise ValueError("degree value not understood: " + str(k)) else: def sampler_wrap(*args): k = sampler(*args) try: return int(k[0]), int(k[1]) except: raise ValueError("(in,out)-degree value pair not understood: " + str(k)) libgraph_tool_generation.gen_graph(g._Graph__graph, N, sampler_wrap, not parallel_edges, not self_loops, not directed, _get_rng(), verbose, True) g.set_directed(directed) if degree_block: if btype in ["object", "string"] or "vector" in btype: btype = "object" elif btype in ["int", "int32_t", "bool"]: btype = "vector<int32_t>" elif btype in ["long", "int64_t"]: btype = "vector<int64_t>" elif btype in ["double"]: btype = "vector<double>" elif btype in ["long double"]: btype = "vector<long double>" if block_membership is not None: bm = g.new_vertex_property(btype) if btype in ["object", "string"] or "vector" in btype: for v in g.vertices(): if not degree_block: bm[v] = block_membership[int(v)] else: if g.is_directed(): bm[v] = (block_membership[int(v)], v.in_degree(), v.out_degree()) else: bm[v] = (block_membership[int(v)], v.out_degree()) else: try: bm.a = block_membership except ValueError: bm = g.new_vertex_property("object") for v in g.vertices(): bm[v] = block_membership[int(v)] else: bm = None if random: g.set_fast_edge_removal(True) random_rewire(g, parallel_edges=parallel_edges, self_loops=self_loops, verbose=verbose, block_membership=bm, **kwargs) g.set_fast_edge_removal(False) if bm is None: return g else: return g, bm
[docs] @_limit_args({"model": ["erdos", "configuration", "constrained-configuration", "probabilistic-configuration", "blockmodel-degree", "blockmodel", "blockmodel-micro"]}) def random_rewire(g, model="configuration", n_iter=10, edge_sweep=True, parallel_edges=False, self_loops=False, configuration=True, edge_probs=None, block_membership=None, cache_probs=True, persist=False, pin=None, ret_fail=False, verbose=False): r"""Shuffle the graph in-place, following a variety of possible statistical models, chosen via the parameter ``model``. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be shuffled. The graph will be modified. model : string (optional, default: ``"configuration"``) The following statistical models can be chosen, which determine how the edges are rewired. ``erdos`` The edges will be rewired entirely randomly, and the resulting graph will correspond to the :math:`G(N,E)` Erdős–Rényi model. ``configuration`` The edges will be rewired randomly, but the degree sequence of the graph will remain unmodified. ``constrained-configuration`` The edges will be rewired randomly, but both the degree sequence of the graph and the *vertex-vertex (in,out)-degree correlations* will remain exactly preserved. If the ``block_membership`` parameter is passed, the block variables at the endpoints of the edges will be preserved, instead of the degree-degree correlation. ``probabilistic-configuration`` This is similar to ``constrained-configuration``, but the vertex-vertex correlations are not preserved, but are instead sampled from an arbitrary degree-based probabilistic model specified via the ``edge_probs`` parameter. The degree-sequence is preserved. ``blockmodel-degree`` This is just like ``probabilistic-configuration``, but the values passed to the ``edge_probs`` function will correspond to the block membership values specified by the ``block_membership`` parameter. ``blockmodel`` This is just like ``blockmodel-degree``, but the degree sequence *is not* preserved during rewiring. ``blockmodel-micro`` This is like ``blockmodel``, but the exact number of edges between groups is preserved as well. n_iter : int (optional, default: ``10``) Number of iterations. If ``edge_sweep == True``, each iteration corresponds to an entire "sweep" over all edges. Otherwise this corresponds to the total number of edges which are randomly chosen for a swap attempt (which may repeat). edge_sweep : bool (optional, default: ``True``) If ``True``, each iteration will perform an entire "sweep" over the edges, where each edge is visited once in random order, and a edge swap is attempted. parallel_edges : bool (optional, default: ``False``) If ``True``, parallel edges are allowed. self_loops : bool (optional, default: ``False``) If ``True``, self-loops are allowed. configuration : bool (optional, default: ``True``) If ``True``, graphs are sampled from the corresponding maximum-entropy ensemble of configurations (i.e. distinguishable half-edge pairings), otherwise they are sampled from the maximum-entropy ensemble of graphs (i.e. indistinguishable half-edge pairings). The distinction is only relevant if parallel edges are allowed. edge_probs : function or sequence of triples (optional, default: ``None``) A function which determines the edge probabilities in the graph. In general it should have the following signature: .. code:: def prob(r, s): ... return p where the return value should be a non-negative scalar. Alternatively, this parameter can be a list of triples of the form ``(r, s, p)``, with the same meaning as the ``r``, ``s`` and ``p`` values above. If a given ``(r, s)`` combination is not present in this list, the corresponding value of ``p`` is assumed to be zero. If the same ``(r, s)`` combination appears more than once, their ``p`` values will be summed together. This is useful when the correlation matrix is sparse, i.e. most entries are zero. If ``model == probabilistic-configuration`` the parameters ``r`` and ``s`` correspond respectively to the (in, out)-degree pair of the source vertex of an edge, and the (in,out)-degree pair of the target of the same edge (for undirected graphs, both parameters are scalars instead). The value of ``p`` should be a number proportional to the probability of such an edge existing in the generated graph. If ``model == blockmodel-degree`` or ``model == blockmodel``, the ``r`` and ``s`` values passed to the function will be the block values of the respective vertices, as specified via the ``block_membership`` parameter. The value of ``p`` should be a number proportional to the probability of such an edge existing in the generated graph. block_membership : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) If supplied, the graph will be rewired to conform to a blockmodel ensemble. The value must be a vertex property map which defines the block of each vertex. cache_probs : bool (optional, default: ``True``) If ``True``, the probabilities returned by the ``edge_probs`` parameter will be cached internally. This is crucial for good performance, since in this case the supplied python function is called only a few times, and not at every attempted edge rewire move. However, in the case were the different parameter combinations to the probability function is very large, the memory and time requirements to keep the cache may not be worthwhile. persist : bool (optional, default: ``False``) If ``True``, an edge swap which is rejected will be attempted again until it succeeds. This may improve the quality of the shuffling for some probabilistic models, and should be sufficiently fast for sparse graphs, but otherwise it may result in many repeated attempts for certain corner-cases in which edges are difficult to swap. pin : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) Edge property map which, if provided, specifies which edges are allowed to be rewired. Edges for which the property value is ``1`` (or ``True``) will be left unmodified in the graph. verbose : bool (optional, default: ``False``) If ``True``, verbose information is displayed. Returns ------- rejection_count : int Number of rejected edge moves (due to parallel edges or self-loops, or the probabilistic model used). See Also -------- random_graph: random graph generation Notes ----- This algorithm iterates through all the edges in the network and tries to swap its target or source with the target or source of another edge. The selected canditate swaps are chosen according to the ``model`` parameter. .. note:: If ``parallel_edges = False``, parallel edges are not placed during rewiring. In this case, the returned graph will be a uncorrelated sample from the desired ensemble only if ``n_iter`` is sufficiently large. The algorithm implements an efficient Markov chain based on edge swaps, with a mixing time which depends on the degree distribution and correlations desired. If degree probabilistic correlations are provided, the mixing time tends to be larger. If ``model`` is either "probabilistic-configuration", "blockmodel" or "blockmodel-degree", the Markov chain still needs to be mixed, even if parallel edges and self-loops are allowed. In this case the Markov chain is implemented using the Metropolis-Hastings [metropolis-equations-1953]_ [hastings-monte-carlo-1970]_ acceptance/rejection algorithm. It will eventually converge to the desired probabilities for sufficiently large values of ``n_iter``. Each edge is tentatively swapped once per iteration, so the overall complexity is :math:`O(V + E \times \text{n-iter})`. If ``edge_sweep == False``, the complexity becomes :math:`O(V + E + \text{n-iter})`. Examples -------- Some small graphs for visualization. .. testcode:: :hide: from numpy.random import random, seed from pylab import * seed(43) gt.seed_rng(42) >>> g, pos = gt.triangulation(np.random.random((1000,2))) >>> pos = gt.arf_layout(g) >>> gt.graph_draw(g, pos=pos, output="rewire_orig.pdf") <...> >>> ret = gt.random_rewire(g, "constrained-configuration") >>> pos = gt.arf_layout(g) >>> gt.graph_draw(g, pos=pos, output="rewire_corr.pdf") <...> >>> ret = gt.random_rewire(g) >>> pos = gt.arf_layout(g) >>> gt.graph_draw(g, pos=pos, output="rewire_uncorr.pdf") <...> >>> ret = gt.random_rewire(g, "erdos") >>> pos = gt.arf_layout(g) >>> gt.graph_draw(g, pos=pos, output="rewire_erdos.pdf") <...> .. testcleanup:: conv_png("rewire_orig.pdf") conv_png("rewire_corr.pdf") conv_png("rewire_uncorr.pdf") conv_png("rewire_erdos.pdf") Some `ridiculograms <http://www.youtube.com/watch?v=YS-asmU3p_4>`_ : .. image:: rewire_orig.png :width: 24% .. image:: rewire_corr.png :width: 24% .. image:: rewire_uncorr.png :width: 24% .. image:: rewire_erdos.png :width: 24% **From left to right**: Original graph; Shuffled graph, with degree correlations; Shuffled graph, without degree correlations; Shuffled graph, with random degrees. We can try with larger graphs to get better statistics, as follows. >>> def sample_k(max): ... accept = False ... while not accept: ... k = np.random.randint(1,max+1) ... accept = np.random.random() < 1.0/k ... return k >>> figure(figsize=(8,3)) <...> >>> g = gt.random_graph(30000, lambda: sample_k(20), model="probabilistic-configuration", ... edge_probs=lambda i, j: exp(abs(i-j)), directed=False, ... n_iter=100) >>> corr = gt.avg_neighbor_corr(g, "out", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Original") <...> >>> ret = gt.random_rewire(g, "constrained-configuration") >>> corr = gt.avg_neighbor_corr(g, "out", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="*", label="Correlated") <...> >>> ret = gt.random_rewire(g) >>> corr = gt.avg_neighbor_corr(g, "out", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Uncorrelated") <...> >>> ret = gt.random_rewire(g, "erdos") >>> corr = gt.avg_neighbor_corr(g, "out", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label=r"Erd\H{o}s") <...> >>> xlabel("$k$") Text(...) >>> ylabel(r"$\left<k_{nn}\right>$") Text(...) >>> legend(loc='center left', bbox_to_anchor=(1, 0.5)) <...> >>> tight_layout() >>> box = gca().get_position() >>> gca().set_position([box.x0, box.y0, box.width * 0.7, box.height]) >>> savefig("shuffled-stats.svg") .. figure:: shuffled-stats.* :align: center Average degree correlations for the different shuffled and non-shuffled graphs. The shuffled graph with correlations displays exactly the same correlation as the original graph. Now let's do it for a directed graph. See :func:`~graph_tool.generation.random_graph` for more details. >>> def sample_k(max): ... accept = False ... while not accept: ... k = np.random.randint(1,max+1) ... accept = np.random.random() < 1.0/k ... return k >>> p = scipy.stats.poisson >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)), ... model="probabilistic-configuration", ... edge_probs=lambda a, b: (p.pmf(a[0], b[1]) * p.pmf(a[1], 20 - b[0])), ... n_iter=100) >>> figure(figsize=(9,3)) <...> >>> corr = gt.avg_neighbor_corr(g, "in", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{o}\right>$ vs i") <...> >>> corr = gt.avg_neighbor_corr(g, "out", "in") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{i}\right>$ vs o") <...> >>> ret = gt.random_rewire(g, "constrained-configuration") >>> corr = gt.avg_neighbor_corr(g, "in", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{o}\right>$ vs i, corr.") <...> >>> corr = gt.avg_neighbor_corr(g, "out", "in") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{i}\right>$ vs o, corr.") <...> >>> ret = gt.random_rewire(g, "configuration") >>> corr = gt.avg_neighbor_corr(g, "in", "out") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{o}\right>$ vs i, uncorr.") <...> >>> corr = gt.avg_neighbor_corr(g, "out", "in") >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", ... label=r"$\left<\text{i}\right>$ vs o, uncorr.") <...> >>> legend(loc='center left', bbox_to_anchor=(1, 0.5)) <...> >>> xlabel("Source degree") Text(...) >>> ylabel("Average target degree") Text(...) >>> tight_layout() >>> box = gca().get_position() >>> gca().set_position([box.x0, box.y0, box.width * 0.55, box.height]) >>> savefig("shuffled-deg-corr-dir.svg") .. figure:: shuffled-deg-corr-dir.* :align: center Average degree correlations for the different shuffled and non-shuffled directed graphs. The shuffled graph with correlations displays exactly the same correlation as the original graph. References ---------- .. [metropolis-equations-1953] Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics 21 (6): 1087-1092 (1953). :doi:`10.1063/1.1699114` .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods Using Markov Chains and Their Applications". Biometrika 57 (1): 97-109 (1970). :doi:`10.1093/biomet/57.1.97` .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt, "Stochastic blockmodels: First steps," Social Networks 5, no. 2: 109-13 (1983) :doi:`10.1016/0378-8733(83)90021-7` .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic blockmodels and community structure in networks," Physical Review E 83, no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926` """ if (edge_probs is not None and not g.is_directed()) and "blockmodel" not in model: corr = lambda i, j: edge_probs(i[1], j[1]) else: corr = edge_probs if model not in ["probabilistic-configuration", "blockmodel", "blockmodel-degree"]: g = GraphView(g, reversed=False) elif edge_probs is None: raise ValueError("A function must be supplied as the 'edge_probs' parameter") traditional = True micro = False if model == "blockmodel-degree": model = "blockmodel" traditional = False if model == "blockmodel-micro": model = "blockmodel" micro = True if pin is None: pin = g.new_edge_property("bool") if pin.value_type() != "bool": pin = pin.copy(value_type="bool") fast = g.get_fast_edge_removal() if not fast: g.set_fast_edge_removal(True) pcount = libgraph_tool_generation.random_rewire(g._Graph__graph, model, n_iter, not edge_sweep, self_loops, parallel_edges, configuration, traditional, micro, persist, corr, _prop("e", g, pin), _prop("v", g, block_membership), cache_probs, _get_rng(), verbose) if not fast: g.set_fast_edge_removal(False) return pcount
[docs] def generate_sbm(b, probs, out_degs=None, in_degs=None, directed=False, micro_ers=False, micro_degs=False): r"""Generate a random graph by sampling from the Poisson or microcanonical stochastic block model. Parameters ---------- b : iterable or :class:`numpy.ndarray` Group membership for each vertex. probs : two-dimensional :class:`numpy.ndarray` or :class:`scipy.sparse.spmatrix` Matrix with edge propensities between groups. The value ``probs[r,s]`` corresponds to the average number of edges between groups ``r`` and ``s`` (or twice the average number if ``r == s`` and the graph is undirected). out_degs : iterable or :class:`numpy.ndarray` (optional, default: ``None``) Out-degree propensity for each vertex. If not provided, a constant value will be used. Note that the values will be normalized inside each group, if they are not already so. in_degs : iterable or :class:`numpy.ndarray` (optional, default: ``None``) In-degree propensity for each vertex. If not provided, a constant value will be used. Note that the values will be normalized inside each group, if they are not already so. directed : ``bool`` (optional, default: ``False``) Whether the graph is directed. micro_ers : ``bool`` (optional, default: ``False``) If true, the `microcanonical` version of the model will be evoked, where the numbers of edges between groups will be given `exactly` by the parameter ``probs``, and this will not fluctuate between samples. micro_degs : ``bool`` (optional, default: ``False``) If true, the `microcanonical` version of the degree-corrected model will be evoked, where the degrees of vertices will be given `exactly` by the parameters ``out_degs`` and ``in_degs``, and they will not fluctuate between samples. (If ``micro_degs == True`` it implies ``micro_ers == True``.) Returns ------- g : :class:`~graph_tool.Graph` The generated graph. See Also -------- random_graph: random graph generation Notes ----- The algorithm generates multigraphs with self-loops, according to the Poisson degree-corrected stochastic block model (SBM) [karrer-stochastic-2011]_, which includes the traditional SBM as a special case. The multigraphs are generated with probability .. math:: P({\boldsymbol A}|{\boldsymbol \theta},{\boldsymbol \lambda},{\boldsymbol b}) = \prod_{i<j}\frac{e^{-\lambda_{b_ib_j}\theta_i\theta_j}(\lambda_{b_ib_j}\theta_i\theta_j)^{A_{ij}}}{A_{ij}!} \times\prod_i\frac{e^{-\lambda_{b_ib_i}\theta_i^2/2}(\lambda_{b_ib_i}\theta_i^2/2)^{A_{ij}/2}}{(A_{ij}/2)!}, where :math:`\lambda_{rs}` is the edge propensity between groups :math:`r` and :math:`s`, and :math:`\theta_i` is the propensity of vertex i to receive edges, which is proportional to its expected degree. Note that in the algorithm it is assumed that the vertex propensities are normalized for each group, .. math:: \sum_i\theta_i\delta_{b_i,r} = 1, such that the value :math:`\lambda_{rs}` will correspond to the average number of edges between groups :math:`r` and :math:`s` (or twice that if :math:`r = s`). If the supplied values of :math:`\theta_i` are not normalized as above, they will be normalized prior to the generation of the graph. For directed graphs, the probability is analogous, with :math:`\lambda_{rs}` being in general asymmetric: .. math:: P({\boldsymbol A}|{\boldsymbol \theta},{\boldsymbol \lambda},{\boldsymbol b}) = \prod_{ij}\frac{e^{-\lambda_{b_ib_j}\theta^+_i\theta^-_j}(\lambda_{b_ib_j}\theta^+_i\theta^-_j)^{A_{ij}}}{A_{ij}!}. Again, the same normalization is assumed: .. math:: \sum_i\theta_i^+\delta_{b_i,r} = \sum_i\theta_i^-\delta_{b_i,r} = 1, such that the value :math:`\lambda_{rs}` will correspond to the average number of directed edges between groups :math:`r` and :math:`s`. The traditional (i.e. non-degree-corrected) SBM is recovered from the above model by setting :math:`\theta_i=1/n_{b_i}` (or :math:`\theta^+_i=\theta^-_i=1/n_{b_i}` in the directed case), which is done automatically if ``out_degs`` and ``in_degs`` are not specified. In case the parameter ``micro_degs == True`` is passed, a `microcanical <https://en.wikipedia.org/wiki/Microcanonical_ensemble>`_ model is used instead, where both the number of edges between groups as well as the degrees of the vertices are preserved `exactly`, instead of only on expectation [peixoto-nonparametric-2017]_. In this case, the parameters are interpreted as :math:`{\boldsymbol\lambda}\equiv{\boldsymbol e}` and :math:`{\boldsymbol\theta}\equiv{\boldsymbol k}`, where :math:`e_{rs}` is the number of edges between groups :math:`r` and :math:`s` (or twice that if :math:`r=s` in the undirected case), and :math:`k_i` is the degree of vertex :math:`i`. This model is a generalization of the configuration model, where multigraphs are sampled with probability .. math:: P({\boldsymbol A}|{\boldsymbol k},{\boldsymbol e},{\boldsymbol b}) = \frac{\prod_{r<s}e_{rs}!\prod_re_{rr}!!\prod_ik_i!}{\prod_re_r!\prod_{i<j}A_{ij}!\prod_iA_{ii}!!}. and in the directed case with probability .. math:: P({\boldsymbol A}|{\boldsymbol k}^+,{\boldsymbol k}^-,{\boldsymbol e},{\boldsymbol b}) = \frac{\prod_{rs}e_{rs}!\prod_ik^+_i!k^-_i!}{\prod_re^+_r!e^-_r!\prod_{ij}A_{ij}!}. where :math:`e^+_r = \sum_se_{rs}`, :math:`e^-_r = \sum_se_{sr}`, :math:`k^+_i = \sum_jA_{ij}` and :math:`k^-_i = \sum_jA_{ji}`. In the non-degree-corrected case, if ``micro_ers == True``, the microcanonical model corresponds to .. math:: P({\boldsymbol A}|{\boldsymbol e},{\boldsymbol b}) = \frac{\prod_{r<s}e_{rs}!\prod_re_{rr}!!}{\prod_rn_r^{e_r}\prod_{i<j}A_{ij}!\prod_iA_{ii}!!}, and in the directed case to .. math:: P({\boldsymbol A}|{\boldsymbol e},{\boldsymbol b}) = \frac{\prod_{rs}e_{rs}!}{\prod_rn_r^{e_r^+ + e_r^-}\prod_{ij}A_{ij}!}. In every case above, the final graph is generated in time :math:`O(V + E + B)`, where :math:`B` is the number of groups. Examples -------- >>> g = gt.collection.data["polblogs"] >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g)) >>> g = gt.Graph(g, prune=True) >>> state = gt.minimize_blockmodel_dl(g) >>> u = gt.generate_sbm(state.b.a, gt.adjacency(state.get_bg(), ... state.get_ers()).T, ... g.degree_property_map("out").a, ... g.degree_property_map("in").a, directed=True) >>> gt.graph_draw(g, g.vp.pos, output="polblogs-sbm.pdf") <...> >>> gt.graph_draw(u, u.own_property(g.vp.pos), output="polblogs-sbm-generated.pdf") <...> .. testcleanup:: conv_png("polblogs-sbm.pdf") conv_png("polblogs-sbm-generated.pdf") .. image:: polblogs-sbm.png :width: 40% .. image:: polblogs-sbm-generated.png :width: 40% *Left:* Political blogs network. *Right:* Sample from the degree-corrected SBM fitted to the original network. References ---------- .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic blockmodels and community structure in networks," Physical Review E 83, no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926` .. [peixoto-nonparametric-2017] Tiago P. Peixoto, "Nonparametric Bayesian inference of the microcanonical stochastic block model", Phys. Rev. E 95 012317 (2017). :doi:`10.1103/PhysRevE.95.012317`, :arxiv:`1610.02703` """ g = Graph() g.add_vertex(len(b)) b = g.new_vp("int", b) if micro_degs: if (out_degs is not None and not numpy.equal(numpy.mod(out_degs, 1), 0).all()): raise ValueError("The 'out_degs' parameter must contain only integer values if 'micro_degs' is set to True.") if (in_degs is not None and not numpy.equal(numpy.mod(in_degs, 1), 0).all()): raise ValueError("The 'out_degs' parameter must contain only integer values if 'micro_degs' is set to True.") deg_type = "double" if not micro_degs else "int64_t" p_type = "double" if not micro_degs else "uint64" if not directed: if out_degs is None: out_degs = in_degs = g.new_vp(deg_type, 1) else: out_degs = in_degs = g.new_vp(deg_type, out_degs) else: if out_degs is None: out_degs = g.new_vp(deg_type, 1) else: out_degs = g.new_vp(deg_type, out_degs) if in_degs is None: in_degs = g.new_vp(deg_type, 1) else: in_degs = g.new_vp(deg_type, in_degs) r, s = probs.nonzero() if not directed: idx = r <= s r = r[idx] s = s[idx] p = numpy.squeeze(numpy.array(probs[r, s])) if len(p.shape) == 0: # B == 1 special case p = numpy.array([p]) if micro_ers: if not numpy.equal(numpy.mod(p, 1), 0).all(): raise ValueError("The 'probs' parameter must contain only integer values if 'micro_ers' is set to True.") g.set_directed(directed) libgraph_tool_generation.gen_sbm(g._Graph__graph, _prop("v", g, b), numpy.asarray(r, dtype="int64"), numpy.asarray(s, dtype="int64"), numpy.asarray(p, dtype=p_type), _prop("v", g, in_degs), _prop("v", g, out_degs), micro_ers, micro_degs, _get_rng()) return g
[docs] def solve_sbm_fugacities(b, ers, out_degs=None, in_degs=None, multigraph=False, self_loops=False, epsilon=1e-8, iter_solve=True, max_iter=0, min_args={}, root_args={}, verbose=False): r"""Obtain SBM fugacities, given expected degrees and edge counts between groups. Parameters ---------- b : iterable or :class:`numpy.ndarray` Group membership for each vertex. ers : two-dimensional :class:`numpy.ndarray` or :class:`scipy.sparse.spmatrix` Matrix with expected edge counts between groups. The value ``ers[r,s]`` corresponds to the average number of edges between groups ``r`` and ``s`` (or twice the average number if ``r == s`` and the graph is undirected). out_degs : iterable or :class:`numpy.ndarray` Expected out-degree for each vertex. in_degs : iterable or :class:`numpy.ndarray` (optional, default: ``None``) Expected in-degree for each vertex. If not given, the graph is assumed to be undirected. multigraph : ``bool`` (optional, default: ``False``) Whether parallel edges are allowed. self_loops : ``bool`` (optional, default: ``False``) Whether self-loops are allowed. epsilon : ``float`` (optional, default: ``1e-8``) Whether self-loops are allowed. iter_solve : ``bool`` (optional, default: ``True``) Solve the system by simple iteration, not gradient-based root-solving. Relevant only if ``multigraph == False``, otherwise `iter_solve = True` is always assumed. max_iter : ``int`` (optional, default: ``0``) If non-zero, this will limit the maximum number of iterations. min_args : ``{}`` (optional, default: ``{}``) Options to be passed to :func:`scipy.optimize.minimize`. Only relevant if ``iter_solve=False``. root_args : ``{}`` (optional, default: ``{}``) Options to be passed to :func:`scipy.optimize.root`. Only relevant if ``iter_solve=False``. verbose : ``bool`` (optional, default: ``False``) If ``True``, verbose information will be displayed. Returns ------- mrs : :class:`scipy.sparse.spmatrix` Edge count fugacities. out_theta : :class:`numpy.ndarray` Vertex out-degree fugacities. in_theta : :class:`numpy.ndarray` Vertex in-degree fugacities. Only returned if ``in_degs is not None``. See Also -------- generate_maxent_sbm: Generate maximum-entropy SBM graphs Notes ----- For simple directed graphs, the fugacities obey the following self-consistency equations: .. math:: \theta^+_i &= \frac{k^+_i}{\sum_{j\ne i}\frac{\theta^-_j\mu_{b_i,b_j}}{1+\theta^+_i\theta^-_j\mu_{b_i,b_j}}}\\ \theta^-_i &= \frac{k^-_i}{\sum_{j\ne i}\frac{\theta^+_j\mu_{b_j,b_i}}{1+\theta^+_i\theta^-_j\mu_{b_j,b_i}}}\\ \mu_{rs} &= \frac{e_{rs}}{\sum_{i\ne j}\delta_{b_i,r}\delta_{b_j,s}\frac{\theta^+_i\theta^-_j}{1+\theta^+_i\theta^-_j\mu_{r,s}}} For directed multigraphs, we have instead: .. math:: \theta^+_i &= \frac{k^+_i}{\sum_{j\ne i}\frac{\theta^-_j\mu_{b_i,b_j}}{1-\theta^+_i\theta^-_j\mu_{b_i,b_j}}}\\ \theta^-_i &= \frac{k^-_i}{\sum_{j\ne i}\frac{\theta^+_j\mu_{b_j,b_i}}{1-\theta^+_i\theta^-_j\mu_{b_j,b_i}}}\\ \mu_{rs} &= \frac{e_{rs}}{\sum_{i\ne j}\delta_{b_i,r}\delta_{b_j,s}\frac{\theta^+_i\theta^-_j}{1-\theta^+_i\theta^-_j\mu_{r,s}}} For undirected graphs, we have the above equations with :math:`\theta^+_i=\theta^-_i=\theta_i`, and :math:`\mu_{rs} = \mu_{sr}`. References ---------- .. [peixoto-latent-2020] Tiago P. Peixoto, "Latent Poisson models for networks with heterogeneous density", Phys. Rev. E 102 012309 (2020) :doi:`10.1103/PhysRevE.102.012309`, :arxiv:`2002.07803` """ b = numpy.asarray(b, dtype="int32") out_degs = numpy.asarray(out_degs, dtype="double") directed = False if in_degs is None: in_degs = out_degs else: in_degs = numpy.asarray(in_degs, dtype="double") directed = True r, s = ers.nonzero() ers = numpy.squeeze(numpy.array(ers[r, s])) ers = numpy.asarray(ers, dtype="double") r = numpy.asarray(r, dtype="int64") s = numpy.asarray(s, dtype="int64") if len(ers.shape) == 0: # B == 1 special case ers = numpy.array([ers], dtype="double") mrs = numpy.zeros(ers.shape) in_theta = numpy.zeros(in_degs.shape) out_theta = numpy.zeros(out_degs.shape) state = libgraph_tool_generation.get_sbm_fugacities(r, s, ers, in_degs, out_degs, b, directed, multigraph, self_loops) if not multigraph and iter_solve: def new_x(x_): nx = Vector_double(len(x_)) nx.a = x_ state.unpack(nx) state.norm() state.new_x(nx) return nx.a.copy() state.norm() x = Vector_double() state.pack(x) x = x.a.copy() niter = 0 delta = epsilon + 1 while delta > epsilon: nx = new_x(x) delta = abs(nx - x).max() if verbose: print(delta, x.min(), x.max(), nx.min(), nx.max()) x = nx niter += 1 if max_iter > 0 and niter >= max_iter: break else: def f(x_): x = Vector_double(len(x_)) if multigraph: x.a = (numpy.tanh(x_) + 1)/2 else: x.a = numpy.exp(x_) state.unpack(x) fval = state.get_f() return -fval def diff(x_): x = Vector_double(len(x_)) if multigraph: x.a = (numpy.tanh(x_) + 1)/2 else: x.a = numpy.exp(x_) state.unpack(x) d = Vector_double(len(x_)) state.get_diff(d) if multigraph: return -d.a * (1-numpy.tanh(x_)**2)/2 else: return -d.a * x.a if not multigraph: state.norm() x = Vector_double() state.pack(x) x = x.a.copy() if multigraph: x[x==1] = 0.999 x[x==0] = 0.001 x = numpy.arctanh(2 * x - 1) else: x[x==0] = 1e-4 x = numpy.log(x) print(x) sol = scipy.optimize.minimize(f, x, jac=diff, **dict(dict(method="L-BFGS-B"), **min_args)) x = sol.x sol = scipy.optimize.root(diff, x, **dict(dict(method="krylov"), **root_args)) x = sol.x if multigraph: x = (numpy.tanh(x) + 1)/2 else: x = numpy.exp(x) x_ = Vector_double() state.pack(x_) x_.a = x state.unpack(x_) state.export_args(r, s, mrs, in_degs, out_degs, in_theta, out_theta, b) mrs = scipy.sparse.coo_matrix((mrs, (r, s))) mrs = mrs.tocsr() if directed: return mrs, out_theta, in_theta else: return mrs, out_theta
[docs] def generate_maxent_sbm(b, mrs, out_theta, in_theta=None, directed=False, multigraph=False, self_loops=False): r"""Generate a random graph by sampling from the maximum-entropy "canonical" stochastic block model. Parameters ---------- b : iterable or :class:`numpy.ndarray` Group membership for each vertex. mrs : two-dimensional :class:`numpy.ndarray` or :class:`scipy.sparse.spmatrix` Matrix with edge fugacities between groups. out_theta : iterable or :class:`numpy.ndarray` Out-degree fugacities for each vertex. in_theta : iterable or :class:`numpy.ndarray` (optional, default: ``None``) In-degree fugacities for each vertex. If not provided, will be identical to ``out_theta``. directed : ``bool`` (optional, default: ``False``) Whether the graph is directed. multigraph : ``bool`` (optional, default: ``False``) Whether parallel edges are allowed. self_loops : ``bool`` (optional, default: ``False``) Whether self-loops are allowed. Returns ------- g : :class:`~graph_tool.Graph` The generated graph. See Also -------- solve_sbm_fugacities: Obtain SBM fugacities, given expected degrees and block constraints. generate_sbm: Generate samples from the Poisson SBM Notes ----- The algorithm generates simple or multigraphs according to the degree-corrected maximum-entropy stochastic block model (SBM) [peixoto-latent-2020]_, which includes the non-degree-corrected SBM as a special case. The simple graphs are generated with probability: .. math:: P({\boldsymbol A}|{\boldsymbol \theta},{\boldsymbol \mu},{\boldsymbol b}) = \prod_{i<j} \frac{\left(\theta_i\theta_j\mu_{b_i,b_j}\right)^{A_{ij}}}{1+\theta_i\theta_j\mu_{b_i,b_j}}, and the multigraphs with probability: .. math:: P({\boldsymbol A}|{\boldsymbol \theta},{\boldsymbol \mu},{\boldsymbol b}) = \prod_{i<j} \left(\theta_i\theta_j\mu_{b_i,b_j}\right)^{A_{ij}}(1-\theta_i\theta_j\mu_{b_i,b_j}). In the above, :math:`\mu_{rs}` is the edge fugacity between groups :math:`r` and :math:`s`, and :math:`\theta_i` is the edge fugacity of vertex i. For directed graphs, the probabilities are analogous, i.e. .. math:: P({\boldsymbol A}|{\boldsymbol \theta}^+,{\boldsymbol \theta}^-,{\boldsymbol \mu},{\boldsymbol b}) &= \prod_{i\ne j} \frac{\left(\theta_i^+\theta_j^-\mu_{b_i,b_j}\right)^{A_{ij}}}{1+\theta_i^+\theta_j^-\mu_{b_i,b_j}} & \quad\text{(simple graphs)},\\ P({\boldsymbol A}|{\boldsymbol \theta}^+,{\boldsymbol \theta}^-,{\boldsymbol \mu},{\boldsymbol b}) &= \prod_{i\ne j} \left(\theta_i^+\theta_j^-\mu_{b_i,b_j}\right)^{A_{ij}}(1-\theta_i^+\theta_j^-\mu_{b_i,b_j}) & \quad\text{(multigraphs)}. References ---------- .. [peixoto-latent-2020] Tiago P. Peixoto, "Latent Poisson models for networks with heterogeneous density", :doi:`10.1103/PhysRevE.102.012309`, :arxiv:`2002.07803` Examples -------- .. doctest:: max_ent_sbm >>> g = gt.collection.data["polblogs"] >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g)) >>> g = gt.Graph(g, prune=True) >>> gt.remove_self_loops(g) >>> gt.remove_parallel_edges(g) >>> state = gt.minimize_blockmodel_dl(g) >>> ers = gt.adjacency(state.get_bg(), state.get_ers()).T >>> out_degs = g.degree_property_map("out").a >>> in_degs = g.degree_property_map("in").a >>> mrs, theta_out, theta_in = gt.solve_sbm_fugacities(state.b.a, ers, out_degs, in_degs) >>> u = gt.generate_maxent_sbm(state.b.a, mrs, theta_out, theta_in, directed=True) >>> gt.graph_draw(g, g.vp.pos, output="polblogs-maxent-sbm.pdf") <...> >>> gt.graph_draw(u, u.own_property(g.vp.pos), output="polblogs-maxent-sbm-generated.pdf") <...> .. testcleanup:: max_ent_sbm conv_png("polblogs-maxent-sbm.pdf") conv_png("polblogs-maxent-sbm-generated.pdf") .. image:: polblogs-maxent-sbm.png :width: 40% .. image:: polblogs-maxent-sbm-generated.png :width: 40% *Left:* Political blogs network. *Right:* Sample from the maximum-entropy degree-corrected SBM fitted to the original network. """ g = Graph(directed=directed) g.add_vertex(len(b)) b = g.new_vp("int", vals=b) out_theta = g.new_vp("double", vals=out_theta) if in_theta is not None: in_theta = g.new_vp("double", vals=in_theta) else: in_theta = out_theta r, s = mrs.nonzero() if not directed: idx = r <= s r = r[idx] s = s[idx] mrs = numpy.squeeze(numpy.array(mrs[r, s])) mrs = numpy.asarray(mrs, dtype="double") r = numpy.asarray(r, dtype="int64") s = numpy.asarray(s, dtype="int64") if len(mrs.shape) == 0: # B == 1 special case mrs = numpy.array([mrs], dtype="double") libgraph_tool_generation.\ gen_maxent_sbm(g._Graph__graph, _prop("v", g, b), r, s, mrs, _prop("v", g, in_theta), _prop("v", g, out_theta), multigraph, self_loops, _get_rng()) return g
[docs] def add_random_edges(g, M, parallel=False, self_loops=False, weight=None): r"""Add new edges to a graph, chosen uniformly at random. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modified. M : ``int`` Number of edges to be added. parallel : ``bool`` (optional, default: ``False``) Wheter to allow parallel edges to be added. self_loops : ``bool`` (optional, default: ``False``) Wheter to allow self_loops to be added. weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: ``None``) Integer edge multiplicities. If supplied, this will be incremented for edges already in the graph, instead of new edges being added. See Also -------- remove_random_edges: remove random edges to the graph Notes ----- If the graph is not being filtered, this algorithm runs in time :math:`O(M)` if ``parallel == True`` or :math:`O(M\left<k\right>)` if ``parallel == False``, where :math:`\left<k\right>` is the average degree of the graph. For filtered graphs, this algorithm runs in time :math:`O(M + E)` if ``parallel == True`` or :math:`O(M\left<k\right> + E)` if ``parallel == False``, where :math:`E` is the number of edges in the graph. Examples -------- Generating a Newman–Watts–Strogatz small-world graph: >>> g = gt.circular_graph(100) >>> gt.add_random_edges(g, 30) """ vfilt = g.get_vertex_filter()[0] filtered = vfilt is not None and vfilt.a.sum() < len(vfilt.a) libgraph_tool_generation.\ add_random_edges(g._Graph__graph, M, parallel, self_loops, filtered, _prop("e", g, weight), _get_rng())
[docs] def remove_random_edges(g, M, weight=None, counts=True): r"""Remove edges from the graph, chosen uniformly at random. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modified. M : ``int`` Number of edges to be removed. weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: ``None``) Integer edge multipliciites or edge removal probabilities. If supplied, and ``counts == True`` this will be decremented for edges removed. counts : ``bool``, optional (default: ``True``) If ``True``, the values given by ``weight`` are assumed to be integer edge multiplicities. Otherwise, they will be only considered to be proportional to the probability of an edge being removed. See Also -------- add_random_edges: add random edges to the graph Notes ----- This algorithm runs in time :math:`O(E\left<k\right>)` if ``weight is None``, otherwise :math:`O(E + \left<k\right>M\log E)`. .. note:: The complexity can be improved to :math:`O(E)` and :math:`O(E + M\log E)`, respectively, if fast edge removal is activated via :meth:`~graph_tool.Graph.set_fast_edge_removal` prior to running this function. Examples -------- .. testcode:: :hide: gt.seed_rng(42) >>> g = gt.lattice([100, 100]) >>> gt.remove_random_edges(g, 10000) >>> print(gt.label_components(g)[1].max()) 3371 """ libgraph_tool_generation.\ remove_random_edges(g._Graph__graph, M, _prop("e", g, weight), counts, _get_rng())
[docs] @_parallel def generate_knn(points, k, dist=None, pairs=False, exact=False, r=.5, max_rk=None, epsilon=.001, c_stop=False, max_iter=0, directed=False, verbose=False): r"""Generate a graph of k-nearest neighbors (or pairs) from a set of multidimensional points. Parameters ---------- points : iterable of lists (or :class:`numpy.ndarray`) of dimension :math:`N\times D` or ``int`` Points of dimension :math:`D` to be considered. If the parameter `dist` is passed, this should be just an `int` containing the number of points. k : ``int`` Number of nearest neighbors per vertex (or number of pairs if ``pairs is True``). dist : function (optional, default: ``None``) If given, this should be a function that returns the distance between two points. The arguments of this function should just be two integers, corresponding to the vertex index. In this case the value of ``points`` should just be the total number of points. If ``dist is None``, then the L2-norm (Euclidean distance) is used. pairs : ``bool`` (optional, default: ``False``) If ``True``, the ``k`` closest pairs of vertices will be returned, otherwise the ``k`` nearest neighbors for every edge is returned. exact : ``bool`` (optional, default: ``False``) If ``False``, an fast approximation will be used, otherwise an exact but slow algorithm will be used. r : ``float`` (optional, default: ``.5``) If ``exact is False``, this specifies the fraction of randomly chosen neighbors that are used for the search. max_rk : ``int`` (optional, default: ``None``) If provided and ``exact is False``, this specifies the maximum number of randomly chosen out neighbors to consider during each iteration. A value of ``None`` implies that all out neighbors are considered. epsilon : ``float`` (optional, default: ``.001``) If ``exact is False`` and ``c_stop is False``, this determines the convergence criterion used by the algorithm. When the fraction of updated neighbors drops below this value, the algorithm stops. c_stop : ``bool`` (optional, default: ``False``) If ``True``, an alternative stopping criterion will be used: The iteration ends when the global clustering coefficient of the undirected KNN graph stopped increasing. In this case, the paramter ``epsilon`` is ignored. max_iter : ``int`` (optional, default: ``0``) If ``exact is False``, this determines the maximum number of iterations allowed. A value of ``0`` means that no limit is imposed. directed : ``bool`` (optional, default: ``False``) If ``True`` a directed version of the graph will be returned, otherwise the graph is undirected. Returns ------- g : :class:`~graph_tool.Graph` The k-nearest neighbors graph. w : :class:`~graph_tool.EdgePropertyMap` Edge property map with the computed distances. Notes ----- The approximate version of this algorithm is based on [dong-efficient-2011]_, and has a (conjectured) run-time of :math:`O(k^2N\log N)`, where :math:`N` is the number of points. The exact version has a complexity of :math:`O(N^2)`. If ``pairs is True``, the :math:`k` closest pairs are found from the nearest neighbors problem as described in [lenhof-k-closest]_, which has a complexity upper bounded by @parallel@ References ---------- .. [dong-efficient-2011] Wei Dong, Charikar Moses, and Kai Li, "Efficient k-nearest neighbor graph construction for generic similarity measures", In Proceedings of the 20th international conference on World wide web (WWW '11). Association for Computing Machinery, New York, NY, USA, 577–586, (2011) :doi:`https://doi.org/10.1145/1963405.1963487` .. [lenhof-k-closest] HP Lenhof, M Smid, "The k closest pairs problem", https://people.scs.carleton.ca/~michiel/k-closestnote.pdf Examples -------- >>> points = np.random.random((1000, 10)) >>> g, w = gt.generate_knn(points, k=5) """ if dist is not None: N = points points = dist else: points = numpy.asarray(points, dtype="float") N = points.shape[0] if max_rk is None: max_rk = N g = Graph(N, fast_edge_removal=True) w = g.new_ep("double") if exact: if pairs: libgraph_tool_generation.gen_k_nearest_exact(g._Graph__graph, points, k, _prop("e", g, w), directed) else: libgraph_tool_generation.gen_knn_exact(g._Graph__graph, points, k, _prop("e", g, w)) else: if pairs: libgraph_tool_generation.gen_k_nearest(g._Graph__graph, points, k, r, max_rk, epsilon, c_stop, max_iter, _prop("e", g, w), directed, verbose, _get_rng()) else: libgraph_tool_generation.gen_knn(g._Graph__graph, points, k, r, max_rk, epsilon, c_stop, max_iter, _prop("e", g, w), verbose, _get_rng()) if not directed: g.set_directed(False) remove_parallel_edges(g) return g, w
[docs] def generate_triadic_closure(g, t, probs=True, curr=None, ego=None): r"""Closes open triads in a graph, according to an ego-based process. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modified. t : :class:`~graph_tool.VertexPropertyMap` or scalar Vertex property map (or scalar value) with the ego closure propensities for every vertex. probs : ``boolean`` (optional, default: ``True``) If ``True``, the values of ``t`` will be interpreted as the independent probability of connecting two neighbors of the respective vertex. Otherwise, it will determine the integer number of pairs of neighbors that will be closed. curr : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) If given, this should be a boolean-valued edge property map, such that triads will only be closed if they contain at least one edge marged with the value ``True``. ego : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) If given, this should be an integer-valued edge property map, containing the ego vertex for each closed triad, which will be updated with the new generation. Returns ------- ego : :class:`~graph_tool.EdgePropertyMap` Integer-valued edge property map, containing the ego vertex for each closed triad. A value of ``-1`` marks original edges that were not created by triadic closure. Notes ----- This algorithm [peixoto-disentangling-2022]_ consist in, for each vertex ``u``, connecting all its neighbors with probability given by ``t[u]``. In case ``probs == False``, then ``t[u]`` indicates the number of random pairs of neighbors of ``u`` that are connected. This algorithm may generate parallel edges. This algorithm has a complexity of :math:`O(N\left<k^2\right>)`, where :math:`\left<k^2\right>` is the second moment of the degree distribution. References ---------- .. [peixoto-disentangling-2022] Tiago P. Peixoto, "Disentangling homophily, community structure and triadic closure in networks", Phys. Rev. X 12, 011004 (2022), :doi:`10.1103/PhysRevX.12.011004`, :arxiv:`2101.02510` Examples -------- >>> g = gt.collection.data["karate"].copy() >>> gt.generate_triadic_closure(g, .5) <...> >>> gt.graph_draw(g, g.vp.pos, output="karate-triadic.png") <...> .. figure:: karate-triadic.* :align: center :width: 40% Karate club network with added random triadic closure edges. """ if not isinstance(t, VertexPropertyMap): t = g.new_vp("double" if probs else "int64_t", val=t) _check_prop_scalar(t, name="t") if curr is None: curr = g.new_ep("bool", val=True) if curr.value_type() != "bool": curr = curr.copy("bool") if ego is None: ego = g.new_ep("int64_t", val=-1) if ego.value_type() != "int64_t": ego = ego.copy("int64_t") libgraph_tool_generation.gen_triadic_closure(g._Graph__graph, _prop("e", g, curr), _prop("e", g, ego), _prop("v", g, t), probs, _get_rng()) return ego
[docs] def predecessor_tree(g, pred_map): """Return a graph from a list of predecessors given by the ``pred_map`` vertex property.""" _check_prop_scalar(pred_map, "pred_map") pg = Graph() libgraph_tool_generation.predecessor_graph(g._Graph__graph, pg._Graph__graph, _prop("v", g, pred_map)) return pg
[docs] def line_graph(g): """Return the line graph of the given graph `g`. Notes ----- Given an undirected graph G, its line graph L(G) is a graph such that: * Each vertex of L(G) represents an edge of G; and * Two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint ("are adjacent") in G. For a directed graph, the second criterion becomes: * Two vertices representing directed edges from u to v and from w to x in G are connected by an edge from uv to wx in the line digraph when v = w. Examples -------- >>> g = gt.collection.data["lesmis"] >>> lg, vmap = gt.line_graph(g) >>> pos = gt.graph_draw(lg, output="lesmis-lg.pdf") .. testcleanup:: conv_png("lesmis-lg.pdf") .. figure:: lesmis-lg.png :align: center :width: 40% Line graph of the coappearance of characters in Victor Hugo's novel "Les Misérables". References ---------- .. [line-wiki] http://en.wikipedia.org/wiki/Line_graph """ lg = Graph(directed=g.is_directed()) vertex_map = lg.new_vertex_property("int64_t") libgraph_tool_generation.line_graph(g._Graph__graph, lg._Graph__graph, _prop("v", lg, vertex_map)) return lg, vertex_map
[docs] def graph_union(g1, g2, intersection=None, props=None, include=False, internal_props=False): """Return the union of graphs ``g1`` and ``g2``, composed of all edges and vertices of ``g1`` and ``g2``, without overlap (if ``intersection == None``). Parameters ---------- g1 : :class:`~graph_tool.Graph` First graph in the union. g2 : :class:`~graph_tool.Graph` Second graph in the union. intersection : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Vertex property map owned by `g2` which maps each of its vertices to vertex indices belonging to `g1`. Negative values mean no mapping exists, and thus both vertices in `g1` and `g2` will be present in the union graph. props : list of tuples of :class:`~graph_tool.PropertyMap` (optional, default: ``None``) Each element in this list must be a tuple of two PropertyMap objects. The first element must be a property of `g1`, and the second of `g2`. If either value is ``None``, an empty map is created. The values of the property maps are propagated into the union graph, and returned. include : bool (optional, default: ``False``) If ``True``, graph `g2` is inserted in-place into `g1`, which is modified. If ``False``, a new graph is created, and both graphs remain unmodified. internal_props : bool (optional, default: ``False``) If ``True``, all internal property maps are propagated, in addition to ``props``. Returns ------- ug : :class:`~graph_tool.Graph` The union graph props : list of :class:`~graph_tool.PropertyMap` objects List of propagated properties. This is only returned if `props` is not empty. Examples -------- .. testcode:: :hide: from numpy.random import random, seed from pylab import * seed(42) gt.seed_rng(42) >>> g = gt.triangulation(random((300,2)))[0] >>> ug = gt.graph_union(g, g) >>> uug = gt.graph_union(g, ug) >>> pos = gt.sfdp_layout(g) >>> gt.graph_draw(g, pos=pos, adjust_aspect=False, output="graph_original.pdf") <...> >>> pos = gt.sfdp_layout(ug) >>> gt.graph_draw(ug, pos=pos, adjust_aspect=False, output="graph_union.pdf") <...> >>> pos = gt.sfdp_layout(uug) >>> gt.graph_draw(uug, pos=pos, adjust_aspect=False, output="graph_union2.pdf") <...> .. testcleanup:: conv_png("graph_original.pdf") conv_png("graph_union.pdf") conv_png("graph_union2.pdf") .. image:: graph_original.png :width: 33% .. image:: graph_union.png :width: 33% .. image:: graph_union2.png :width: 33% """ pnames = None if props is None: props = [] if internal_props: pnames = [] for (k, name), p1 in g1.properties.items(): if k == 'g': continue p2 = g2.properties.get((k, name), None) props.append((p1, p2)) pnames.append(name) for (k, name), p2 in g2.properties.items(): if k == 'g' or (k, name) in g1.properties: continue props.append((None, p2)) pnames.append(name) gprops = [[(name, g1.properties[('g', name)]) for name in g1.graph_properties.keys()], [(name, g2.properties[('g', name)]) for name in g2.graph_properties.keys()]] if not include: g1 = GraphView(g1, skip_properties=True) p1s = [] for i, (p1, p2) in enumerate(props): if p1 is None: continue if p1.key_type() == "v": g1.vp[str(i)] = p1 elif p1.key_type() == "e": g1.ep[str(i)] = p1 g1 = Graph(g1, prune=True) for i, (p1, p2) in enumerate(props): if p1 is None: continue if str(i) in g1.vp: props[i] = (g1.vp[str(i)], p2) del g1.vp[str(i)] else: props[i] = (g1.ep[str(i)], p2) del g1.ep[str(i)] else: emask, emask_flip = g1.get_edge_filter() emask_flipped = False if emask is not None and not emask_flip: emask.a = numpy.logical_not(emask.a) g1.set_edge_filter(emask, True) emask_flipped = True vmask, vmask_flip = g1.get_vertex_filter() vmask_flipped = False if vmask is not None and not vmask_flip: vmask.a = numpy.logical_not(vmask.a) g1.set_vertex_filter(vmask, True) vmask_flipped = True if intersection is None: intersection = g2.new_vertex_property("int64_t", -1) else: intersection = intersection.copy("int64_t") u1 = GraphView(g1, directed=True, skip_properties=True) u2 = GraphView(g2, directed=True, skip_properties=True) vmap, emap = libgraph_tool_generation.graph_union(u1._Graph__graph, u2._Graph__graph, _prop("v", g2, intersection)) if include: emask, emask_flip = g1.get_edge_filter() if emask is not None and emask_flipped: emask.a = numpy.logical_not(emask.a) g1.set_edge_filter(emask, False) vmask, vmask_flip = g1.get_vertex_filter() if vmask is not None and vmask_flipped: vmask.a = numpy.logical_not(vmask.a) g1.set_vertex_filter(vmask, False) n_props = [] for p1, p2 in props: if p1 is None: p1 = g1.new_property(p2.key_type(), p2.value_type()) else: p1 = u1.own_property(p1) if p2 is None: p2 = g2.new_property(p1.key_type(), p1.value_type()) else: p2 = u2.own_property(p2) if not include: p1 = g1.copy_property(p1) if p2.value_type() != p1.value_type(): p2 = g2.copy_property(p2, value_type=p1.value_type()) if p1.key_type() == 'v': libgraph_tool_generation.\ vertex_property_union(u1._Graph__graph, u2._Graph__graph, vmap, emap, _prop(p1.key_type(), g1, p1), _prop(p2.key_type(), g2, p2)) else: libgraph_tool_generation.\ edge_property_union(u1._Graph__graph, u2._Graph__graph, vmap, emap, _prop(p1.key_type(), g1, p1), _prop(p2.key_type(), g2, p2)) n_props.append(p1) if pnames is not None: for name, p in zip(pnames, n_props): g1.properties[(p.key_type(), name)] = p if not include: for name, p in gprops[0]: g1.graph_properties[name] = g1.own_property(p.copy()) for name, p in gprops[1]: if name not in g1.graph_properties: g1.graph_properties[name] = g1.own_property(p.copy()) n_props = [] if len(n_props) > 0: return g1, n_props else: return g1
[docs] @_limit_args({"type": ["simple", "delaunay"]}) def triangulation(points, type="simple", periodic=False): r""" Generate a 2D or 3D triangulation graph from a given point set. Parameters ---------- points : :class:`numpy.ndarray` Point set for the triangulation. It may be either a N x d array, where N is the number of points, and d is the space dimension (either 2 or 3). type : string (optional, default: ``'simple'``) Type of triangulation. May be either 'simple' or 'delaunay'. periodic : bool (optional, default: ``False``) If ``True``, periodic boundary conditions will be used. This is parameter is valid only for type="delaunay", and is otherwise ignored. Returns ------- triangulation_graph : :class:`~graph_tool.Graph` The generated graph. pos : :class:`~graph_tool.VertexPropertyMap` Vertex property map with the Cartesian coordinates. See Also -------- random_graph: random graph generation Notes ----- A triangulation [cgal-triang]_ is a division of the convex hull of a point set into triangles, using only that set as triangle vertices. In simple triangulations (`type="simple"`), the insertion of a point is done by locating a face that contains the point, and splitting this face into three new faces (the order of insertion is therefore important). If the point falls outside the convex hull, the triangulation is restored by flips. Apart from the location, insertion takes a time O(1). This bound is only an amortized bound for points located outside the convex hull. Delaunay triangulations (`type="delaunay"`) have the specific empty sphere property, that is, the circumscribing sphere of each cell of such a triangulation does not contain any other vertex of the triangulation in its interior. These triangulations are uniquely defined except in degenerate cases where five points are co-spherical. Note however that the CGAL implementation computes a unique triangulation even in these cases. Examples -------- .. testcode:: :hide: from numpy.random import random, seed from pylab import * seed(42) gt.seed_rng(42) >>> points = random((500, 2)) * 4 >>> g, pos = gt.triangulation(points) >>> weight = g.new_edge_property("double") # Edge weights corresponding to ... # Euclidean distances >>> for e in g.edges(): ... weight[e] = sqrt(sum((array(pos[e.source()]) - ... array(pos[e.target()]))**2)) >>> b = gt.betweenness(g, weight=weight) >>> b[1].a *= 100 >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b[0], ... edge_pen_width=b[1], output="triang.pdf") <...> >>> g, pos = gt.triangulation(points, type="delaunay") >>> weight = g.new_edge_property("double") >>> for e in g.edges(): ... weight[e] = sqrt(sum((array(pos[e.source()]) - ... array(pos[e.target()]))**2)) >>> b = gt.betweenness(g, weight=weight) >>> b[1].a *= 120 >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b[0], ... edge_pen_width=b[1], output="triang-delaunay.pdf") <...> .. testcleanup:: conv_png("triang.pdf") conv_png("triang-delaunay.pdf") 2D triangulation of random points: .. image:: triang.png :width: 40% .. image:: triang-delaunay.png :width: 40% *Left:* Simple triangulation. *Right:* Delaunay triangulation. The vertex colors and the edge thickness correspond to the weighted betweenness centrality. References ---------- .. [cgal-triang] http://www.cgal.org/Manual/last/doc_html/cgal_manual/Triangulation_3/Chapter_main.html """ if points.shape[1] not in [2, 3]: raise ValueError("points array must have shape N x d, with d either 2 or 3.") # copy points to ensure continuity and correct data type points = numpy.array(points, dtype='float64') if points.shape[1] == 2: npoints = numpy.zeros((points.shape[0], 3)) npoints[:,:2] = points points = npoints g = Graph(directed=False) pos = g.new_vertex_property("vector<double>") libgraph_tool_generation.triangulation(g._Graph__graph, points, _prop("v", g, pos), type, periodic) return g, pos
[docs] def lattice(shape, periodic=False): r""" Generate a N-dimensional square lattice. Parameters ---------- shape : list or :class:`numpy.ndarray` List of sizes in each dimension. periodic : bool (optional, default: ``False``) If ``True``, periodic boundary conditions will be used. Returns ------- lattice_graph : :class:`~graph_tool.Graph` The generated graph. See Also -------- triangulation: 2D or 3D triangulation random_graph: random graph generation Examples -------- .. testcode:: :hide: gt.seed_rng(42) >>> g = gt.lattice([10,10]) >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2) >>> gt.graph_draw(g, pos=pos, output="lattice.pdf") <...> >>> g = gt.lattice([10,20], periodic=True) >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2) >>> gt.graph_draw(g, pos=pos, output="lattice_periodic.pdf") <...> >>> g = gt.lattice([10,10,10]) >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2) >>> gt.graph_draw(g, pos=pos, output="lattice_3d.pdf") <...> .. testcleanup:: conv_png("lattice.pdf") conv_png("lattice_periodic.pdf") conv_png("lattice_3d.pdf") .. image:: lattice.png :width: 33% .. image:: lattice_periodic.png :width: 33% .. image:: lattice_3d.png :width: 33% *Left:* 10x10 2D lattice. *Middle:* 10x20 2D periodic lattice (torus). *Right:* 10x10x10 3D lattice. References ---------- .. [lattice] http://en.wikipedia.org/wiki/Square_lattice """ g = Graph(directed=False) libgraph_tool_generation.lattice(g._Graph__graph, shape, periodic) return g
[docs] def complete_graph(N, self_loops=False, directed=False): r""" Generate complete graph. Parameters ---------- N : ``int`` Number of vertices. self_loops : bool (optional, default: ``False``) If ``True``, self-loops are included. directed : bool (optional, default: ``False``) If ``True``, a directed graph is generated. Returns ------- complete_graph : :class:`~graph_tool.Graph` A complete graph. Examples -------- .. doctest:: complete >>> g = gt.complete_graph(30) >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2) >>> gt.graph_draw(g, pos=pos, output="complete.pdf") <...> .. testcleanup:: complete conv_png("complete.pdf") .. figure:: complete.png :width: 20% A complete graph with :math:`N=30` vertices. References ---------- .. [complete] http://en.wikipedia.org/wiki/Complete_graph """ g = Graph(directed=directed) libgraph_tool_generation.complete(g._Graph__graph, N, directed, self_loops) return g
[docs] def circular_graph(N, k=1, self_loops=False, directed=False): r""" Generate a circular graph. Parameters ---------- N : ``int`` Number of vertices. k : ``int`` (optional, default: ``True``) Number of nearest neighbors to be connected. self_loops : bool (optional, default: ``False``) If ``True``, self-loops are included. directed : bool (optional, default: ``False``) If ``True``, a directed graph is generated. Returns ------- circular_graph : :class:`~graph_tool.Graph` A circular graph. Examples -------- >>> g = gt.circular_graph(30, 2) >>> pos = gt.sfdp_layout(g, cooling_step=0.95) >>> gt.graph_draw(g, pos=pos, output="circular.pdf") <...> .. testcleanup:: conv_png("circular.pdf") .. figure:: circular.png :width: 20% A circular graph with :math:`N=30` vertices, and :math:`k=2`. """ g = Graph(directed=directed) libgraph_tool_generation.circular(g._Graph__graph, N, k, directed, self_loops) return g
[docs] def geometric_graph(points, radius, ranges=None): r""" Generate a geometric network form a set of N-dimensional points. Parameters ---------- points : list or :class:`numpy.ndarray` List of points. This must be a two-dimensional array, where the rows are coordinates in a N-dimensional space. radius : float Pairs of points with an euclidean distance lower than this parameters will be connected. ranges : list or :class:`numpy.ndarray` (optional, default: ``None``) If provided, periodic boundary conditions will be assumed, and the values of this parameter it will be used as the ranges in all dimensions. It must be a two-dimensional array, where each row will cointain the lower and upper bound of each dimension. Returns ------- geometric_graph : :class:`~graph_tool.Graph` The generated graph. pos : :class:`~graph_tool.VertexPropertyMap` A vertex property map with the position of each vertex. Notes ----- A geometric graph [geometric-graph]_ is generated by connecting points embedded in a N-dimensional euclidean space which are at a distance equal to or smaller than a given radius. See Also -------- triangulation: 2D or 3D triangulation random_graph: random graph generation lattice : N-dimensional square lattice Examples -------- .. testcode:: :hide: from numpy.random import random, seed from pylab import * seed(42) gt.seed_rng(42) >>> points = random((500, 2)) * 4 >>> g, pos = gt.geometric_graph(points, 0.3) >>> gt.graph_draw(g, pos=pos, output="geometric.pdf") <...> >>> g, pos = gt.geometric_graph(points, 0.3, [(0,4), (0,4)]) >>> pos = gt.graph_draw(g, output="geometric_periodic.pdf") .. testcleanup:: conv_png("geometric.pdf") conv_png("geometric_periodic.pdf") .. image:: geometric.png :width: 40% .. image:: geometric_periodic.png :width: 40% *Left:* Geometric network with random points. *Right:* Same network, but with periodic boundary conditions. References ---------- .. [geometric-graph] Jesper Dall and Michael Christensen, "Random geometric graphs", Phys. Rev. E 66, 016121 (2002), :doi:`10.1103/PhysRevE.66.016121` """ g = Graph(directed=False) pos = g.new_vertex_property("vector<double>") if type(points) != numpy.ndarray: points = numpy.array(points) if len(points.shape) < 2: raise ValueError("points list must be a two-dimensional array!") if ranges is not None: periodic = True if type(ranges) != numpy.ndarray: ranges = numpy.array(ranges, dtype="float") else: ranges = array(ranges, dtype="float") else: periodic = False ranges = () libgraph_tool_generation.geometric(g._Graph__graph, points, float(radius), ranges, periodic, _prop("v", g, pos)) return g, pos
[docs] def price_network(N, m=1, c=None, gamma=1, directed=True, seed_graph=None): r"""A generalized version of Price's --- or Barabási-Albert if undirected --- preferential attachment network model. Parameters ---------- N : int Size of the network. m : int (optional, default: ``1``) Out-degree of newly added vertices. c : float (optional, default: ``1 if directed == True else 0``) Constant factor added to the probability of a vertex receiving an edge (see notes below). gamma : float (optional, default: ``1``) Preferential attachment exponent (see notes below). directed : bool (optional, default: ``True``) If ``True``, a Price network is generated. If ``False``, a Barabási-Albert network is generated. seed_graph : :class:`~graph_tool.Graph` (optional, default: ``None``) If provided, this graph will be used as the starting point of the algorithm. Returns ------- price_graph : :class:`~graph_tool.Graph` The generated graph. Notes ----- The (generalized) [price]_ network is either a directed or undirected graph (the latter is called a Barabási-Albert network), generated dynamically by at each step adding a new vertex, and connecting it to :math:`m` other vertices, chosen with probability :math:`\pi` defined as: .. math:: \pi \propto k^\gamma + c where :math:`k` is the (in-)degree of the vertex (or simply the degree in the undirected case). Note that for directed graphs we must have :math:`c \ge 0`, and for undirected graphs, :math:`c > -\min(k_{\text{min}}, m)^{\gamma}`, where :math:`k_{\text{min}}` is the smallest degree in the seed graph. If :math:`\gamma=1`, the tail of resulting in-degree distribution of the directed case is given by .. math:: P_{k_\text{in}} \sim k_\text{in}^{-(2 + c/m)}, or for the undirected case .. math:: P_{k} \sim k^{-(3 + c/m)}. However, if :math:`\gamma \ne 1`, the in-degree distribution is not scale-free (see [dorogovtsev-evolution]_ for details). Note that if `seed_graph` is not given, the algorithm will *always* start with one vertex if :math:`c > 0`, or with two vertices with an edge between them otherwise. If :math:`m > 1`, the degree of the newly added vertices will be vary dynamically as :math:`m'(t) = \min(m, V(t))`, where :math:`V(t)` is the number of vertices added so far. If this behaviour is undesired, a proper seed graph with :math:`V \ge m` vertices must be provided. This algorithm runs in :math:`O(V\log V)` time. See Also -------- triangulation: 2D or 3D triangulation random_graph: random graph generation lattice : N-dimensional square lattice geometric_graph : N-dimensional geometric network Examples -------- .. testcode:: :hide: gt.seed_rng(42) >>> g = gt.price_network(20000) >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, cooling_step=0.99), ... vertex_fill_color=g.vertex_index, vertex_size=2, ... vcmap=matplotlib.cm.plasma, ... edge_pen_width=1, output="price-network.pdf") <...> >>> g = gt.price_network(20000, c=0.1) >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, cooling_step=0.99), ... vertex_fill_color=g.vertex_index, vertex_size=2, ... vcmap=matplotlib.cm.plasma, ... edge_pen_width=1, output="price-network-broader.pdf") <...> .. testcleanup:: conv_png("price-network.pdf") conv_png("price-network-broader.pdf") .. figure:: price-network.png :align: center :width: 60% Price network with :math:`N=2\times 10^4` nodes and :math:`c=1`. The colors represent the order in which vertices were added. .. figure:: price-network-broader.png :align: center :width: 60% Price network with :math:`N=2\times 10^4` nodes and :math:`c=0.1`. The colors represent the order in which vertices were added. References ---------- .. [yule] Yule, G. U. "A Mathematical Theory of Evolution, based on the Conclusions of Dr. J. C. Willis, F.R.S.". Philosophical Transactions of the Royal Society of London, Ser. B 213: 21-87, 1925, :doi:`10.1098/rstb.1925.0002` .. [price] Derek De Solla Price, "A general theory of bibliometric and other cumulative advantage processes", Journal of the American Society for Information Science, Volume 27, Issue 5, pages 292-306, September 1976, :doi:`10.1002/asi.4630270505` .. [barabasi-albert] Barabási, A.-L., and Albert, R., "Emergence of scaling in random networks", Science, 286, 509, 1999, :doi:`10.1126/science.286.5439.509` .. [dorogovtsev-evolution] S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of networks", Advances in Physics, 2002, Vol. 51, No. 4, 1079-1187, :doi:`10.1080/00018730110112519` """ if c is None: c = 1 if directed else 0 if seed_graph is None: g = Graph(directed=directed) if c > 0: g.add_vertex() else: g.add_vertex(2) g.add_edge(g.vertex(1), g.vertex(0)) N -= g.num_vertices() else: g = seed_graph if ((directed and c < 0) or (not directed and c <= -min(g.degree_property_map("out").fa.min(), m) ** gamma)): raise ValueError("Parameter 'c' is too small, and yields negative probabilities") libgraph_tool_generation.price(g._Graph__graph, N, gamma, c, m, _get_rng()) return g
[docs] def condensation_graph(g, prop, vweight=None, eweight=None, avprops=None, aeprops=None, self_loops=False, parallel_edges=False): r""" Obtain the condensation graph, where each vertex with the same 'prop' value is condensed in one vertex. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modelled. prop : :class:`~graph_tool.VertexPropertyMap` Vertex property map with the community partition. vweight : :class:`~graph_tool.VertexPropertyMap` (optional, default: None) Vertex property map with the optional vertex weights. eweight : :class:`~graph_tool.EdgePropertyMap` (optional, default: None) Edge property map with the optional edge weights. avprops : list of :class:`~graph_tool.VertexPropertyMap` (optional, default: None) If provided, the sum of each property map in this list for each vertex in the condensed graph will be computed and returned. aeprops : list of :class:`~graph_tool.EdgePropertyMap` (optional, default: None) If provided, the sum of each property map in this list for each edge in the condensed graph will be computed and returned. self_loops : ``bool`` (optional, default: ``False``) If ``True``, self-loops due to intra-block edges are also included in the condensation graph. parallel_edges : ``bool`` (optional, default: ``False``) If ``True``, parallel edges will be included in the condensation graph, such that the total number of edges will be the same as in the original graph. Returns ------- condensation_graph : :class:`~graph_tool.Graph` The community network prop : :class:`~graph_tool.VertexPropertyMap` The community values. vcount : :class:`~graph_tool.VertexPropertyMap` A vertex property map with the vertex count for each community. ecount : :class:`~graph_tool.EdgePropertyMap` An edge property map with the inter-community edge count for each edge. va : list of :class:`~graph_tool.VertexPropertyMap` A list of vertex property maps with summed values of the properties passed via the ``avprops`` parameter. ea : list of :class:`~graph_tool.EdgePropertyMap` A list of edge property maps with summed values of the properties passed via the ``avprops`` parameter. Notes ----- Each vertex in the condensation graph represents one community in the original graph (vertices with the same 'prop' value), and the edges represent existent edges between vertices of the respective communities in the original graph. Examples -------- .. testsetup:: condensation_graph gt.seed_rng(43) np.random.seed(42) Let's first obtain the best block partition with ``B=5``. .. doctest:: condensation_graph >>> g = gt.collection.data["polbooks"] >>> # fit a SBM >>> state = gt.BlockState(g) >>> gt.mcmc_equilibrate(state, wait=1000) (...) >>> b = state.get_blocks() >>> b = gt.perfect_prop_hash([b])[0] >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=b, vertex_shape=b, ... output="polbooks_blocks_B5.pdf") <...> Now we get the condensation graph: .. doctest:: condensation_graph >>> bg, bb, vcount, ecount, avp, aep = \ ... gt.condensation_graph(g, b, avprops=[g.vp["pos"]], ... self_loops=True) >>> pos = avp[0] >>> for v in bg.vertices(): ... pos[v].a /= vcount[v] >>> gt.graph_draw(bg, pos=avp[0], vertex_fill_color=bb, vertex_shape=bb, ... vertex_size=gt.prop_to_size(vcount, mi=40, ma=100), ... edge_pen_width=gt.prop_to_size(ecount, mi=2, ma=10), ... fit_view=.8, output="polbooks_blocks_B5_cond.pdf") <...> .. testcleanup:: condensation_graph conv_png("polbooks_blocks_B5.pdf") conv_png("polbooks_blocks_B5_cond.pdf") .. figure:: polbooks_blocks_B5.png :align: center :width: 60% Block partition of a political books network with :math:`B=5`. .. figure:: polbooks_blocks_B5_cond.png :align: center :width: 60% Condensation graph of the obtained block partition. """ gp = Graph(directed=g.is_directed()) if vweight is None: vcount = gp.new_vertex_property("int32_t") else: vcount = gp.new_vertex_property(vweight.value_type()) if eweight is None: ecount = gp.new_edge_property("int32_t") else: ecount = gp.new_edge_property(eweight.value_type()) if prop is g.vertex_index: prop = prop.copy(value_type="int32_t") cprop = gp.new_vertex_property(prop.value_type()) if avprops is None: avprops = [] avp = [] r_avp = [] for p in avprops: if p is g.vertex_index: p = p.copy(value_type="int") if "string" in p.value_type(): raise ValueError("Cannot compute sum of string properties!") temp = g.new_vertex_property(p.value_type()) cp = gp.new_vertex_property(p.value_type()) avp.append((_prop("v", g, p), _prop("v", g, temp), _prop("v", gp, cp))) r_avp.append(cp) if aeprops is None: aeprops = [] aep = [] r_aep = [] for p in aeprops: if p is g.edge_index: p = p.copy(value_type="int") if "string" in p.value_type(): raise ValueError("Cannot compute sum of string properties!") temp = g.new_edge_property(p.value_type()) cp = gp.new_edge_property(p.value_type()) aep.append((_prop("e", g, p), _prop("e", g, temp), _prop("e", gp, cp))) r_aep.append(cp) libgraph_tool_generation.community_network(g._Graph__graph, gp._Graph__graph, _prop("v", g, prop), _prop("v", gp, cprop), _prop("v", gp, vcount), _prop("e", gp, ecount), _prop("v", g, vweight), _prop("e", g, eweight), self_loops, parallel_edges) u = GraphView(g, directed=True, reversed=False) libgraph_tool_generation.community_network_vavg(u._Graph__graph, gp._Graph__graph, _prop("v", g, prop), _prop("v", gp, cprop), _prop("v", g, vweight), avp) libgraph_tool_generation.community_network_eavg(g._Graph__graph, gp._Graph__graph, _prop("v", g, prop), _prop("v", gp, cprop), _prop("e", g, eweight), aep, self_loops, parallel_edges) return gp, cprop, vcount, ecount, r_avp, r_aep
[docs] def contract_parallel_edges(g, weight=None): r"""Contract all parallel edges into simple edges, keeping track of their multipliciites. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modified. weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: ``None``) Edge multiplicities. Returns ------- weight : :class:`~graph_tool.EdgePropertyMap` Edge multiplicities. See Also -------- expand_parallel_edges: expand edge multiplicities into parallel edges. Notes ----- This algorithm runs in time :math:`O(N + E)` where :math:`N` and :math:`E` are the number of vertices and edges in the graph, respectively. Examples -------- >>> u = gt.collection.data["polblogs"].copy() >>> u.set_directed(False) >>> g = u.copy() >>> w = gt.contract_parallel_edges(g) >>> gt.expand_parallel_edges(g, w) >>> gt.similarity(g, u) 1.0 """ if weight is None: weight = g.new_ep("int", val=1) libgraph_tool_generation.\ contract_parallel_edges(g._Graph__graph, _prop("e", g, weight)) return weight
[docs] def remove_parallel_edges(g): """Remove all parallel edges from the graph. Only one edge from each parallel edge set is left.""" libgraph_tool_generation.\ contract_parallel_edges(g._Graph__graph, _prop("e", g, None))
[docs] def remove_self_loops(g): """Remove all self-loops edges from the graph.""" eprop = label_self_loops(g) remove_labeled_edges(g, eprop)
[docs] def expand_parallel_edges(g, weight): r"""Expand edge multiplicities into parallel edges. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modified. weight : :class:`~graph_tool.EdgePropertyMap` Edge multiplicities. See Also -------- contract_parallel_edges: contract all parallel edges into simple edges. Notes ----- This algorithm runs in time :math:`O(N + E)` where :math:`N` is the number of vertices and :math:`E` is the final number of edges in the graph. Examples -------- >>> u = gt.collection.data["polblogs"].copy() >>> u.set_directed(False) >>> g = u.copy() >>> w = gt.contract_parallel_edges(g) >>> gt.expand_parallel_edges(g, w) >>> gt.similarity(g, u) 1.0 """ libgraph_tool_generation.\ expand_parallel_edges(g._Graph__graph, _prop("e", g, weight))
def remove_labeled_edges(g, label): """Remove every edge `e` such that `label[e] != 0`.""" u = GraphView(g, directed=True, reversed=g.is_reversed(), skip_properties=True) libgraph_tool_generation.\ remove_labeled_edges(u._Graph__graph, _prop("e", g, label))
[docs] def label_parallel_edges(g, mark_only=False, eprop=None): r"""Label edges which are parallel, i.e, have the same source and target vertices. For each parallel edge set :math:`PE`, the labelling starts from 0 to :math:`|PE|-1`. If `mark_only==True`, all parallel edges are simply marked with the value 1. If the `eprop` parameter is given (a :class:`~graph_tool.EdgePropertyMap`), the labelling is stored there.""" if eprop is None: if mark_only: eprop = g.new_edge_property("bool") else: eprop = g.new_edge_property("int32_t") libgraph_tool_generation.\ label_parallel_edges(g._Graph__graph, _prop("e", g, eprop), mark_only) return eprop
[docs] def label_self_loops(g, mark_only=False, eprop=None): """Label edges which are self-loops, i.e, the source and target vertices are the same. For each self-loop edge set :math:`SL`, the labelling starts from 0 to :math:`|SL|-1`. If `mark_only == True`, self-loops are labeled with 1 and others with 0. If the `eprop` parameter is given (a :class:`~graph_tool.EdgePropertyMap`), the labelling is stored there.""" if eprop is None: if mark_only: eprop = g.new_edge_property("bool") else: eprop = g.new_edge_property("int32_t") libgraph_tool_generation.\ label_self_loops(g._Graph__graph, _prop("e", g, eprop), mark_only) return eprop
class Sampler(libgraph_tool_generation.Sampler): def __init__(self, values, probs): libgraph_tool_generation.Sampler.__init__(self, values, probs) def sample(self): return libgraph_tool_generation.Sampler.sample(self, _get_rng()) class DynamicSampler(libgraph_tool_generation.DynamicSampler): def __init__(self, values=None, probs=None): if values is None: values = probs = [] libgraph_tool_generation.DynamicSampler.__init__(self, values, probs) def sample(self): return libgraph_tool_generation.DynamicSampler.sample(self, _get_rng())