Source code for graph_tool.draw.gtk_draw

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2025 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import numpy

import copy

from .. import GraphView, PropertyMap, ungroup_vector_property, \
    group_vector_property, infect_vertex_property, edge_endpoint_property, _prop
from .cairo_draw import *
from .cairo_draw import _edefaults
from .. draw import sfdp_layout, random_layout, _avg_edge_distance, \
    coarse_graphs


def point_in_poly(p, poly):
    i, c = 0, False
    j = len(poly) - 1
    while i < len(poly):
        if (((poly[i][1] > p[1]) != (poly[j][1] > p[1])) and
            (p[0] < (poly[j][0] - poly[i][0]) * (p[1] - poly[i][1]) /
             (poly[j][1] - poly[i][1]) + poly[i][0])):
            c = not c
        j = i
        i += 1
    return c


class VertexMatrix(object):
    def __init__(self, g, pos):
        self.g = g
        self.pos = pos
        self.m = None
        self.m_res = None
        self.update()

    def get_box(self, p, size=None):
        if size is None:
            return (int(round(float(p[0] / self.m_res))),
                    int(round(float(p[1] / self.m_res))))
        else:
            n = int(np.ceil(size / self.m_res))
            b = self.get_box(p)
            boxes = []
            for i in range(-n, n):
                for j in range(-n, n):
                    boxes.append((b[0] + i, b[1] + j))
            return boxes

    def update(self):
        pos_x, pos_y = ungroup_vector_property(self.pos, [0, 1])
        x_range = [pos_x.fa.min(), pos_x.fa.max()]
        y_range = [pos_y.fa.min(), pos_y.fa.max()]
        self.m_res = min(x_range[1] - x_range[0],
                         y_range[1] - y_range[0]) / np.sqrt(self.g.num_vertices())
        self.m_res *= np.sqrt(10)

        self.m = defaultdict(set)
        for v in self.g.vertices():
            i, j = self.get_box(self.pos[v])
            self.m[(i, j)].add(v)

    def update_vertex(self, v, new_pos):
        b = self.get_box(self.pos[v])
        self.m[b].remove(v)
        self.pos[v] = new_pos
        b = self.get_box(self.pos[v])
        self.m[b].add(v)

    def remove_vertex(self, v):
        b = self.get_box(self.pos[v])
        self.m[b].remove(v)

    def add_vertex(self, v):
        b = self.get_box(self.pos[v])
        self.m[b].add(v)

    def get_closest(self, pos):
        pos = np.array(pos)
        box = self.get_box(pos)
        dist = numpy.inf
        clst = None
        for i in range(-1, 2):
            for j in range(-1, 2):
                b = (box[0] + i, box[1] + j)
                for v in self.m[b]:
                    ndist = ((pos - self.pos[v].a[:2]) ** 2).sum()
                    if ndist < dist:
                        dist = ndist
                        clst = v
        return clst

    def mark_polygon(self, points, selected):
        rect = [min([x[0] for x in points]), min([x[1] for x in points]),
                max([x[0] for x in points]), max([x[1] for x in points])]
        p1 = self.get_box(rect[:2])
        p2 = self.get_box(rect[2:])
        for i in range(p1[0], p2[0] + 1):
            for j in range(p1[1], p2[1] + 1):
                for v in self.m[(i, j)]:
                    p = self.pos[v]
                    if not point_in_poly(p, points):
                        continue
                    selected[v] = True


def apply_transforms(g, pos, m):
    m = tuple(m)
    g = GraphView(g, directed=True)
    libgraph_tool_draw.apply_transforms(g._Graph__graph, _prop("v", g, pos),
                                        m[0], m[1], m[2], m[3], m[4], m[5])


[docs] class GraphWidget(Gtk.DrawingArea): def __init__(self, g, pos, vprops=None, eprops=None, vorder=None, eorder=None, nodesfirst=False, update_layout=False, layout_K=1., layout_init_step=.1, multilevel=False, coarse_method="hybrid", sfdp_args={}, display_props=None, display_props_size=11, fit_view=True, fit_view_ink=None, bg_color=None, max_render_time=300, layout_callback=None, key_press_callback=None, highlight_color=None, **kwargs): r"""Interactive GTK+ widget displaying a given graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be drawn. pos : :class:`~graph_tool.VertexPropertyMap` Vector-valued vertex property map containing the x and y coordinates of the vertices. vprops : ``dict`` (optional, default: ``None``) Dictionary with the vertex properties. Individual properties may also be given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is the name of the property. eprops : ``dict`` (optional, default: ``None``) Dictionary with the edge properties. Individual properties may also be given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is the name of the property. vorder : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) If provided, defines the relative order in which the vertices are drawn. eorder : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) If provided, defines the relative order in which the edges are drawn. nodesfirst : ``bool`` (optional, default: ``False``) If ``True``, the vertices are drawn first, otherwise the edges are. update_layout : ``bool`` (optional, default: ``False``) If ``True``, the layout will be updated dynamically. layout_K : float (optional, default: ``1.0``) Parameter ``K`` passed to :func:`~graph_tool.draw.sfdp_layout`. layout_init_step : float (optional, default: ``0.1``) Initial speed of the layout algorithm. multilevel : ``bool`` (optional, default: ``False``) Parameter ``multilevel`` passed to :func:`~graph_tool.draw.sfdp_layout`. coarse_method : ``bool`` (optional, default: ``hybrid``) Parameter ``coarse_method`` passed to :func:`~graph_tool.draw.sfdp_layout`. sfdp_args : ``dict`` (optional, default: ``{}``) Additional parameters to be passed to :func:`~graph_tool.draw.sfdp_layout`. display_props : ``list`` of :class:`~graph_tool.VertexPropertyMap` instances (optional, default: ``None``) List of properties to be displayed when the mouse passes over a vertex. display_props_size : float (optional, default: ``11.``) Font size used to display the vertex properties. fit_view : ``bool``, float or tuple (optional, default: ``True``) If ``True``, the layout will be scaled to fit the entire clip region. If a float value is given, it will be interpreted as ``True``, and in addition the viewport will be scaled out by that factor. If a tuple value is given, it should have four values ``(x, y, w, h)`` that specify the view in user coordinates. fit_view_ink : ``bool`` (optional, default: ``None``) If ``True``, and ``fit_view == True`` the drawing will be performed once to figure out the bounding box, before the actual drawing is made. Otherwise, only the vertex positions will be used for this purpose. If the value is ``None``, then it will be assumed ``True`` for networks of size 10,000 nodes or less, otherwise it will be assumed ``False``. bg_color : str or sequence (optional, default: ``None``) Background color. The default is white. max_render_time : ``int`` (optional, default: ``300``) Maximum amount of time (in milliseconds) spent rendering portions of the graph. layout_callback : function (optional, default: ``Node``) User-supplied callback to be called whenever the positions of the layout have changed. It needs to have the following signature: .. code-block:: python def callback(g, picked, pos, vprops, eprops): ... where ``g`` is the graph being drawn, ``picked`` is either a single vertex or a boolean vertex property map representing the vertices currently selected, ``pos`` the vertex positions, and ``vprops`` and ``eprops`` are dictionaries with the vertex and edge properties currently being used by the layout. key_press_callback : function (optional, default: ``Node``) User-supplied callback to be called whenever a key-press event has happened. It needs to have the following signature: .. code-block:: python def callback(g, keyval, picked, pos, vprops, eprops): ... where ``g`` is the graph being drawn, ``keyval`` is the key id, ``picked`` is either a single vertex or a boolean vertex property map representing the vertices currently selected, ``pos`` the vertex positions, and ``vprops`` and ``eprops`` are dictionaries with the vertex and edge properties currently being used by the layout. highligth_color : str or sequence (optional, default: ``None``) Color used to highlight the currently selected node and its incident edges. The default is red. vertex_* : :class:`~graph_tool.VertexPropertyMap` or arbitrary types (optional, default: ``None``) Parameters following the pattern ``vertex_<prop-name>`` specify the vertex property with name ``<prop-name>``, as an alternative to the ``vprops`` parameter. edge_* : :class:`~graph_tool.EdgePropertyMap` or arbitrary types (optional, default: ``None``) Parameters following the pattern ``edge_<prop-name>`` specify the edge property with name ``<prop-name>``, as an alternative to the ``eprops`` parameter. **kwargs Any extra parameters are passed to :func:`~graph_tool.draw.cairo_draw`. Notes ----- The graph drawing can be panned by dragging with the middle mouse button pressed. The graph may be zoomed by scrolling with the mouse wheel, or equivalent (if the "shift" key is held, the vertex/edge sizes are scaled accordingly). The layout may be rotated by dragging while holding the "control" key. Pressing the "r" key centers and zooms the layout around the graph. By pressing the "a" key, the current translation, scaling and rotation transformations are applied to the vertex positions themselves, and the transformation matrix is reset (if this is never done, the given position properties are never modified). Individual vertices may be selected by pressing the left mouse button. The currently selected vertex follows the mouse pointer. To stop the selection, the right mouse button must be pressed. Alternatively, a group of vertices may be selected by holding the "shift" button while the pointer is dragged while pressing the left button. The selected vertices may be moved by dragging the pointer with the left button pressed. They may be rotated by holding the "control" key and scrolling with the mouse. If the key "z" is pressed, the layout is zoomed to fit the selected vertices only. If the key "s" is pressed, the dynamic spring-block layout is activated. Vertices which are currently selected are not updated. """ Gtk.DrawingArea.__init__(self) vprops = {} if vprops is None else vprops eprops = {} if eprops is None else eprops props, kwargs = parse_props("vertex", kwargs) vprops.update(props) props, kwargs = parse_props("edge", kwargs) eprops.update(props) self.kwargs = kwargs self.g = g self.pos = pos self.vprops = vprops self.eprops = eprops self.vorder = vorder self.eorder = eorder self.nodesfirst = nodesfirst self.panning = None self.tmatrix = cairo.Matrix() # position to surface self.smatrix = cairo.Matrix() # surface to screen self.pointer = [0, 0] self.picked = False self.selected = g.new_vertex_property("bool", False) self.highlight = g.new_vertex_property("bool", False) self.sel_edge_filt = g.new_edge_property("bool", False) self.highlight_color = highlight_color self.srect = None self.drag_begin = None self.moved_picked = False self.vertex_matrix = None self.fit_view = fit_view if fit_view_ink is None: self.fit_view_ink = self.g.num_vertices() <= 1000 else: self.fit_view_ink = fit_view_ink self.display_prop = g.vertex_index if display_props is None \ else display_props self.display_prop_size = display_props_size self.geometry = None self.base = None self.base_geometry = None self.background = None self.bg_color = bg_color if bg_color is not None else [1, 1, 1, 1] if isinstance(self.bg_color, str): self.bg_color = matplotlib.colors.to_rgba(self.bg_color) self.regenerate_generator = None self.regenerate_max_time = max_render_time self.max_render_time = max_render_time self.lazy_regenerate = False self.layout_callback_id = None self.layout_K = layout_K self.layout_init_step = layout_init_step self.epsilon = 0.01 * self.layout_K self.multilevel_layout = multilevel self.sfdp_args = sfdp_args.copy() self.vweight = None self.eweight = None self.groups = self.sfdp_args.pop("groups", None) self.gamma = self.sfdp_args.pop("gamma", 0) self.layout_user_callback = layout_callback self.key_press_user_callback = key_press_callback if multilevel: self.cgs = coarse_graphs(g, method=coarse_method, groups=self.groups, gamma=self.gamma) u = next(self.cgs) (self.cg, self.cpos, self.layout_K, self.cvcount, self.cecount, self.groups, self.gamma) = u self.ag = self.g self.apos = self.pos self.g = self.cg self.pos = self.cpos self.layout_step = self.layout_K self._own_props() else: self.cg = None if update_layout: self.reset_layout() # Event signals self.connect("motion-notify-event", self.motion_notify_event) self.connect("button-press-event", self.button_press_event) self.connect("button-release-event", self.button_release_event) self.connect("scroll-event", self.scroll_event) self.connect("key-press-event", self.key_press_event) self.connect("key-release-event", self.key_release_event) self.connect("destroy-event", self.cleanup) self.set_events(Gdk.EventMask.EXPOSURE_MASK | Gdk.EventMask.LEAVE_NOTIFY_MASK | Gdk.EventMask.BUTTON_PRESS_MASK | Gdk.EventMask.BUTTON_RELEASE_MASK | Gdk.EventMask.BUTTON_MOTION_MASK | Gdk.EventMask.POINTER_MOTION_MASK | Gdk.EventMask.POINTER_MOTION_HINT_MASK | Gdk.EventMask.SCROLL_MASK | Gdk.EventMask.SMOOTH_SCROLL_MASK | Gdk.EventMask.KEY_PRESS_MASK | Gdk.EventMask.KEY_RELEASE_MASK) self.set_property("can-focus", True) self.connect("draw", self.draw) try: self.zoom_gesture = Gtk.GestureZoom.new(self) self.zoom_gesture.connect("begin", self.zoom_begin) self.zoom_gesture.connect("end", self.zoom_end) self.zoom_gesture.connect("scale_changed", self.scale_changed) self.rotate_gesture = Gtk.GestureRotate.new(self) self.rotate_gesture.connect("begin", self.rotate_begin) self.rotate_gesture.connect("end", self.rotate_end) self.rotate_gesture.connect("angle_changed", self.angle_changed) self.zoom_gesture.group(self.rotate_gesture) self.drag_gesture = Gtk.GestureDrag.new(self) self.drag_gesture.set_touch_only(True) self.drag_gesture.connect("begin", self.drag_gesture_begin) self.drag_gesture.connect("end", self.drag_gesture_end) self.drag_gesture.connect("drag_update", self.drag_gesture_update) except AttributeError: pass self.is_zooming = False self.is_rotating = False self.is_drag_gesture = False def update(self, pos=None, vprops=None, eprops=None, vorder=None, eorder=None, nodesfirst=None, display_props=None, fit_view=True, bg_color=None, **kwargs): vprops = {} if vprops is None else copy.copy(vprops) eprops = {} if eprops is None else copy.copy(eprops) props, kwargs = parse_props("vertex", kwargs) vprops.update(props) props, kwargs = parse_props("edge", kwargs) eprops.update(props) if pos is not None: self.pos = pos self.vprops.update(vprops) self.eprops.update(eprops) if vorder is not None: self.vorder = vorder if eorder is not None: self.eorder = eorder if nodesfirst is not None: self.nodesfirst = nodesfirst self.fit_view = fit_view self.display_prop = self.g.vertex_index if display_props is None \ else display_props self.bg_color = bg_color if bg_color is not None else [1, 1, 1, 1] def cleanup(self): """Cleanup callbacks.""" if gobject is None: return if self.layout_callback_id is not None: ret = gobject.source_remove(self.layout_callback_id) if not ret: warnings.warn("error removing idle callback...") self.layout_callback_id = None def __del__(self): self.cleanup() # Layout update def reset_layout(self): """Reset the layout algorithm.""" if self.layout_callback_id is not None: gobject.source_remove(self.layout_callback_id) self.layout_callback_id = None self.layout_step = _avg_edge_distance(self.g, self.pos) * self.layout_init_step self.layout_callback_id = gobject.idle_add(self.layout_callback) def _own_props(self): self.selected = self.g.own_property(self.selected) self.highlight = self.g.own_property(self.highlight) self.sel_edge_filt = self.g.own_property(self.sel_edge_filt) for k, vp in self.vprops.items(): if isinstance(vp, PropertyMap): self.vprops[k] = self.g.own_property(vp) for k, ep in self.eprops.items(): if isinstance(ep, PropertyMap): self.eprops[k] = self.g.own_property(ep) def layout_callback(self): """Perform one step of the layout algorithm.""" if self.layout_callback_id is None or self.g.num_vertices() == 0: return False pos_temp = ungroup_vector_property(self.pos, [0, 1]) sfdp_layout(self.g, **dict(dict(vweight=self.vweight, eweight=self.eweight, K=self.layout_K, max_iter=1, pos=self.pos, pin=self.selected, init_step=self.layout_step, adaptive_cooling=True, multilevel=False, groups=self.groups, gamma=self.gamma, epsilon=0), **self.sfdp_args)) self.layout_step *= 0.97 if self.vertex_matrix is not None: self.vertex_matrix.update() self.regenerate_surface(reset=True, complete=True) self.queue_draw() ps = ungroup_vector_property(self.pos, [0, 1]) delta = np.sqrt((pos_temp[0].fa - ps[0].fa) ** 2 + (pos_temp[1].fa - ps[1].fa) ** 2).mean() if self.layout_user_callback is not None: self.layout_user_callback(self, self.g, self.picked, self.pos, self.vprops, self.eprops) if delta > self.epsilon: return True else: if self.multilevel_layout: try: u = next(self.cgs) (self.cg, self.cpos, K, self.cvcount, self.cecount, self.groups, self.gamma) = u self.layout_K *= 0.75 self.g = self.cg self.pos = self.cpos self.vweight = self.cvcount self.eweight = self.cecount self._own_props() self.layout_step = max(self.layout_K, _avg_edge_distance(self.g, self.pos)) if self.vertex_matrix is not None: self.vertex_matrix = VertexMatrix(self.g, self.pos) self.epsilon = 0.05 * self.layout_K * self.g.num_edges() geometry = [self.get_allocated_width(), self.get_allocated_height()] adjust_default_sizes(self.g, geometry, self.vprops, self.eprops, force=True) self.fit_to_window(ink=False) self.regenerate_surface(reset=True, complete=True) except StopIteration: self.g = self.ag self.pos = self.apos self._own_props() self.g.copy_property(self.cpos, self.pos) if self.vertex_matrix is not None: self.vertex_matrix = VertexMatrix(self.g, self.pos) self.multilevel_layout = False self.layout_init_step = max(self.layout_K, _avg_edge_distance(self.g, self.pos) / 10) self.epsilon = 0.01 * self.layout_K return True self.layout_callback_id = None return False # Actual drawing def regenerate_surface(self, reset=False, complete=False): r"""Redraw the graph surface.""" if reset: self.regenerate_generator = None self.regen_context = None geometry = [self.get_allocated_width() * 3, self.get_allocated_height() * 3] if (self.base is None or self.base_geometry[0] != geometry[0] or self.base_geometry[1] != geometry[1] or reset): w = self.get_window() if w is None: return False self.regenerate_generator = None self.regen_context = None self.base = w.create_similar_surface(cairo.CONTENT_COLOR_ALPHA, *geometry) self.base_geometry = geometry m = cairo.Matrix() m.translate(self.get_allocated_width(), self.get_allocated_height()) self.smatrix = self.smatrix.multiply(m) self.tmatrix = self.tmatrix.multiply(self.smatrix) self.smatrix = cairo.Matrix() self.smatrix.translate(-self.get_allocated_width(), -self.get_allocated_height()) if self.regenerate_generator is None: cr = cairo.Context(self.base) cr.set_source_rgba(*self.bg_color) cr.paint() cr.set_matrix(self.tmatrix) mtime = -1 if complete else self.regenerate_max_time res = 5 * self.get_scale_factor() gen = cairo_draw(self.g, self.pos, cr, self.vprops, self.eprops, self.vorder, self.eorder, self.nodesfirst, res=res, max_render_time=mtime, **self.kwargs) self.regenerate_generator = gen self.regen_context = cr if self.regenerate_generator is not None: try: next(self.regenerate_generator) except StopIteration: self.regenerate_generator = None self.regen_context = None self.lazy_regenerate = False def draw(self, da, cr): r"""Redraw the widget.""" geometry = [self.get_allocated_width(), self.get_allocated_height()] if self.geometry is None: adjust_default_sizes(self.g, geometry, self.vprops, self.eprops) self.fit_to_window(ink=False) self.regenerate_surface() self.geometry = geometry cr.save() cr.set_matrix(self.smatrix) c1 = self.pos_to_device((0, 0), surface=True, cr=cr) c2 = self.pos_to_device((0, self.base_geometry[1]), surface=True, cr=cr) c3 = self.pos_to_device((self.base_geometry[0], 0), surface=True, cr=cr) c4 = self.pos_to_device(self.base_geometry, surface=True, cr=cr) c = [c1, c2, c3, c4] ul = [min([x[0] for x in c]), min([x[1] for x in c])] lr = [max([x[0] for x in c]), max([x[1] for x in c])] cr.restore() if ((ul[0] > 0 or lr[0] < geometry[0] or ul[1] > 0 or lr[1] < geometry[1]) or self.lazy_regenerate): self.regenerate_surface(reset=True) elif self.regenerate_generator is not None: self.regenerate_surface() if self.background is None: # draw checkerboard self.background = cairo.ImageSurface(cairo.FORMAT_ARGB32, 14, 14) bcr = cairo.Context(self.background) bcr.rectangle(0, 0, 7, 7) bcr.set_source_rgb(102. / 256, 102. / 256, 102. / 256) bcr.fill() bcr.rectangle(7, 0, 7, 7) bcr.set_source_rgb(153. / 256, 153. / 256, 153. / 256) bcr.fill() bcr.rectangle(0, 7, 7, 7) bcr.set_source_rgb(153. / 256, 153. / 256, 153. / 256) bcr.fill() bcr.rectangle(7, 7, 7, 7) bcr.set_source_rgb(102. / 256, 102. / 256, 102. / 256) bcr.fill() del bcr self.background = cairo.SurfacePattern(self.background) self.background.set_extend(cairo.EXTEND_REPEAT) cr.set_source(self.background) cr.paint() cr.save() cr.set_matrix(self.smatrix) cr.set_source_surface(self.base) cr.paint() cr.restore() if self.selected.fa.sum() > 0: # draw immediate neighborhood if self.selected.fa.sum() == 1: vprops = dict(**self.vprops) vprops["halo"] = self.highlight vprops["halo_color"] = (0.9372549019607843, 0.1607843137254902, 0.1607843137254902, .9) vprops["halo_size"] = 1.3 if self.highlight_color is not None: vprops["halo_color"] = self.highlight_color eprops = {} eprops["color"] = (0.9372549019607843, 0.1607843137254902, 0.1607843137254902, .9) if "control_points" in self.eprops: eprops["control_points"] = self.eprops["control_points"] if self.highlight_color is not None: eprops["color"] = self.highlight_color self.highlight.fa = self.selected.fa infect_vertex_property(GraphView(self.g, directed=False), self.highlight, [True]) self.highlight.fa = numpy.logical_xor(self.selected.fa, self.highlight.fa) hsrc = edge_endpoint_property(self.g, self.selected, "source") htgt = edge_endpoint_property(self.g, self.selected, "target") self.sel_edge_filt.fa = numpy.logical_or(hsrc.fa, htgt.fa) u = GraphView(self.g, vfilt=numpy.logical_or(self.highlight.fa, self.selected.fa), efilt=self.sel_edge_filt) eprops["pen_width"] = self.eprops.get("pen_width", _edefaults["pen_width"]) if isinstance(eprops["pen_width"], PropertyMap): pw = eprops["pen_width"] pw = u.own_property(pw.copy()) pw.fa *= 1.1 else: eprops["pen_width"] *= 1.1 cr.save() cr.set_matrix(self.tmatrix.multiply(self.smatrix)) cairo_draw(u, self.pos, cr, vprops, eprops, self.vorder, self.eorder, self.nodesfirst) cr.restore() # draw selected edges vprops = dict(**self.vprops) vprops["halo"] = True eprops = {} u = GraphView(self.g, vfilt=self.selected, efilt=self.sel_edge_filt) cr.save() cr.set_matrix(self.tmatrix.multiply(self.smatrix)) cairo_draw(u, self.pos, cr, vprops, eprops, self.vorder, self.eorder, self.nodesfirst) cr.restore() if self.srect is not None: cr.move_to(self.srect[0], self.srect[1]) cr.line_to(self.srect[0], self.srect[3]) cr.line_to(self.srect[2], self.srect[3]) cr.line_to(self.srect[2], self.srect[1]) cr.line_to(self.srect[0], self.srect[1]) cr.close_path() cr.set_source_rgba(0, 0, 1, 0.3) cr.fill() if self.regenerate_generator is not None: icon = self.render_icon(Gtk.STOCK_EXECUTE, Gtk.IconSize.BUTTON) Gdk.cairo_set_source_pixbuf(cr, icon, 10, 10) cr.paint() if (self.picked is not None and self.picked is not False and not isinstance(self.picked, PropertyMap)): if isinstance(self.display_prop, PropertyMap): txt = str(self.display_prop[self.picked]) else: txt = ", ".join([str(x[self.picked]) for x in self.display_prop]) geometry = [self.get_allocated_width(), self.get_allocated_height()] pos = [10, geometry[1] - 10] cr.set_font_size(self.display_prop_size) ext = cr.text_extents(txt) pad = 8 cr.rectangle(pos[0] - pad / 2, pos[1] - ext[3] - pad / 2, ext[2] + pad, ext[3] + pad) cr.set_source_rgba(1, 1, 1, 1.0) cr.fill() cr.move_to(pos[0], pos[1]) cr.set_source_rgba(0, 0, 0, 1.0) cr.show_text(txt) if self.regenerate_generator is not None: self.queue_draw() return False # Position and transforms def pos_to_device(self, pos, dist=False, surface=False, cr=None): """Convert a position from the graph space to the widget space.""" ox, oy = self.get_window().get_position() if cr is None: cr = self.get_window().cairo_create() if surface: cr.set_matrix(self.smatrix) else: cr.set_matrix(self.tmatrix.multiply(self.smatrix)) if dist: return cr.user_to_device_distance(pos[0], pos[1]) else: x, y = cr.user_to_device(pos[0], pos[1]) return (x - ox, y - oy) def pos_from_device(self, pos, dist=False, surface=False, cr=None): """Convert a position from the widget space to the device space.""" ox, oy = self.get_window().get_position() if cr is None: cr = self.get_window().cairo_create() if surface: cr.set_matrix(self.smatrix) else: cr.set_matrix(self.tmatrix.multiply(self.smatrix)) if dist: return cr.device_to_user_distance(pos[0], pos[1]) else: return cr.device_to_user(pos[0] + ox, pos[1] + oy) def apply_transform(self): r"""Apply current transform matrix to vertex coordinates.""" zoom = self.pos_from_device((1, 0), dist=True)[0] apply_transforms(self.g, self.pos, self.smatrix.multiply(self.tmatrix)) self.tmatrix = cairo.Matrix() self.tmatrix.scale(zoom, zoom) self.smatrix = cairo.Matrix() apply_transforms(self.g, self.pos, self.smatrix.multiply(self.tmatrix)) self.tmatrix = cairo.Matrix() self.tmatrix.scale(1. / zoom, 1. / zoom) if self.vertex_matrix is not None: self.vertex_matrix.update() self.fit_to_window() self.regenerate_surface() self.queue_draw() def fit_to_window(self, ink=False, g=None): r"""Fit graph to window.""" geometry = [self.get_allocated_width(), self.get_allocated_height()] ox, oy = self.get_window().get_position() if g is None: g = self.g pos = g.own_property(self.pos) if self.fit_view != False: try: x, y, w, h = self.fit_view zoom = min(geometry[0] / w, geometry[1] / h) except TypeError: pad = self.fit_view if self.fit_view is not True else 0.9 M = self.tmatrix.multiply(self.smatrix) pos_x, pos_y = ungroup_vector_property(pos, [0, 1]) P = np.zeros((2, len(pos_x.fa))) P[0, :] = pos_x.fa P[1, :] = pos_y.fa T = np.zeros((2, 2)) O = np.zeros(2) T[0, 0], T[1, 0], T[0, 1], T[1, 1], O[0], O[1] = M P = np.dot(T, P) P[0] += O[0] P[1] += O[1] pos_x.fa = P[0, :] pos_y.fa = P[1, :] pos = group_vector_property([pos_x, pos_y]) if self.fit_view_ink: x, y, zoom = fit_to_view_ink(g, pos, geometry, self.vprops, self.eprops, pad=pad) else: x, y, zoom = fit_to_view(get_bb(g, pos), geometry, pad=pad) else: x, y, zoom = 0, 0, 1 m = cairo.Matrix() m.translate(ox, oy) m.scale(zoom, zoom) m.translate(-x, -y) self.tmatrix = self.tmatrix.multiply(self.smatrix.multiply(m)) self.smatrix = cairo.Matrix() if ink: scale_ink(zoom, self.vprops, self.eprops) # Picking vertices def init_picked(self): r"""Init picked vertices.""" self.selected.fa = False p = self.pos_from_device(self.pointer) if self.vertex_matrix is None: self.vertex_matrix = VertexMatrix(self.g, self.pos) self.picked = self.vertex_matrix.get_closest(p) if self.picked is not None: self.selected.a[int(self.picked)] = True # Key and pointer bindings def button_press_event(self, widget, event): r"""Handle button press.""" if self.g.num_vertices() == 0: return if self.is_zooming or self.is_rotating or self.is_drag_gesture: return x = event.x y = event.y state = event.state self.pointer = [x, y] if event.button == 1 and not state & Gdk.ModifierType.CONTROL_MASK: if state & Gdk.ModifierType.SHIFT_MASK: self.srect = [x, y, x, y] elif self.picked == False: self.init_picked() self.queue_draw() if self.drag_begin is None: self.drag_begin = [x, y] elif (event.button == 2 or (event.button == 1 and state & Gdk.ModifierType.CONTROL_MASK)): self.panning = (event.x, event.y) elif event.button == 3: if isinstance(self.picked, PropertyMap): self.picked = None self.selected.fa = False self.queue_draw() elif self.picked is not False: self.picked = False self.selected.fa = False self.queue_draw() def button_release_event(self, widget, event): r"""Handle button release.""" if self.g.num_vertices() == 0: return if self.is_zooming or self.is_rotating or self.is_drag_gesture: return state = event.state if event.button == 1: if self.srect is not None: if self.picked == False: self.init_picked() if not isinstance(self.picked, PropertyMap): self.picked = self.selected if state & Gdk.ModifierType.CONTROL_MASK: old_picked = self.picked.fa.copy() self.picked.fa = False p1 = [self.srect[0], self.srect[1]] p2 = [self.srect[2], self.srect[3]] poly = [p1, [p1[0], p2[1]], p2, [p2[0], p1[1]]] poly = [self.pos_from_device(x) for x in poly] self.vertex_matrix.mark_polygon(poly, self.picked) if state & Gdk.ModifierType.CONTROL_MASK: self.picked.fa = old_picked - self.picked.fa & old_picked self.srect = None self.queue_draw() self.drag_begin = None if self.moved_picked: if self.layout_user_callback is not None: self.layout_user_callback(self, self.g, self.picked, self.pos, self.vprops, self.eprops) self.moved_picked = False self.regenerate_surface(complete=True) self.queue_draw() elif event.button == 2: self.panning = None self.queue_draw() def motion_notify_event(self, widget, event): r"""Handle pointer motion.""" if self.is_zooming or self.is_rotating: return if event.is_hint: x, y, state = event.window.get_pointer()[1:] else: x = event.x y = event.y state = event.state self.pointer = [x, y] if (state & Gdk.ModifierType.BUTTON1_MASK and not state & Gdk.ModifierType.CONTROL_MASK): if state & Gdk.ModifierType.SHIFT_MASK: if self.srect is not None: self.srect[2:] = self.pointer self.queue_draw() elif (self.picked is not None and self.picked is not False and self.srect is None): p = self.pos_from_device(self.pointer) if isinstance(self.picked, PropertyMap): if self.drag_begin is not None: c = self.pos_from_device(self.drag_begin) u = GraphView(self.g, vfilt=self.picked) delta = np.asarray(p) - np.asarray(c) for v in u.vertices(): new_pos = self.pos[v].a + delta self.vertex_matrix.update_vertex(self.g.vertex(int(v)), new_pos) self.drag_begin = self.pointer elif self.vertex_matrix is not None: self.vertex_matrix.update_vertex(self.picked, p) self.moved_picked = True self.queue_draw() elif (state & Gdk.ModifierType.BUTTON2_MASK or (state & Gdk.ModifierType.BUTTON1_MASK and state & Gdk.ModifierType.CONTROL_MASK)): if self.panning is not None: offset = [x - self.panning[0], y - self.panning[1]] m = cairo.Matrix() m.translate(offset[0], offset[1]) self.smatrix = self.smatrix * m self.panning = (x, y) self.queue_draw() else: self.panning = None if self.picked is not False: p = self.pos_from_device(self.pointer) if self.vertex_matrix is None: self.vertex_matrix = VertexMatrix(self.g, self.pos) v = self.vertex_matrix.get_closest(p) if v is not None and not isinstance(self.picked, PropertyMap): if self.picked is not None: self.selected[self.picked] = False if self.picked != v: self.queue_draw() self.picked = v self.selected[v] = True def scroll_event(self, widget, event): r"""Handle scrolling.""" if self.is_zooming or self.is_rotating: return self.regenerate_max_time = 50 def restore_render_time(): self.regenerate_max_time = self.max_render_time return False self.surface_callback = gobject.timeout_add(2000, restore_render_time) state = event.state angle = 0 zoom = 1. if event.direction == Gdk.ScrollDirection.SMOOTH: is_smooth, dx, dy = event.get_scroll_deltas() if dy == 0: return else: dy = 1 if (event.direction == Gdk.ScrollDirection.UP or event.direction == Gdk.ScrollDirection.SMOOTH): if state & Gdk.ModifierType.CONTROL_MASK: if state & Gdk.ModifierType.SHIFT_MASK: angle = .01 * dy else: angle = .1 * dy else: if dy > 0: zoom = 1. + (1. / .9 - 1) * abs(dy) else: zoom = 1. / (1. + abs(dy) / 9) if state & Gdk.ModifierType.SHIFT_MASK: scale_ink(zoom, self.vprops, self.eprops) elif event.direction == Gdk.ScrollDirection.DOWN: if state & Gdk.ModifierType.CONTROL_MASK: if state & Gdk.ModifierType.SHIFT_MASK: angle = -.01 else: angle = -.1 else: zoom = .9 if state & Gdk.ModifierType.SHIFT_MASK: scale_ink(zoom, self.vprops, self.eprops) # keep centered if zoom != 1: center = self.pointer cpos = self.pos_from_device(center) m = cairo.Matrix() m.scale(zoom, zoom) self.tmatrix = self.tmatrix.multiply(m) ncpos = self.pos_from_device(center) self.tmatrix.translate(ncpos[0] - cpos[0], ncpos[1] - cpos[1]) self.lazy_regenerate = True if angle != 0: if not isinstance(self.picked, PropertyMap): center = (self.pointer[0], self.pointer[1]) m = cairo.Matrix() m.translate(center[0], center[1]) m.rotate(angle) m.translate(-center[0], -center[1]) self.smatrix = self.smatrix.multiply(m) else: center = self.pos_from_device(self.pointer) u = GraphView(self.g, vfilt=self.picked) if self.vertex_matrix is not None: for v in u.vertices(): self.vertex_matrix.remove_vertex(self.g.vertex(int(v))) m = cairo.Matrix() m.rotate(angle) m.translate(-center[0], -center[1]) apply_transforms(u, self.pos, m) m = cairo.Matrix() m.translate(center[0], center[1]) apply_transforms(u, self.pos, m) if self.vertex_matrix is not None: for v in u.vertices(): self.vertex_matrix.add_vertex(self.g.vertex(int(v))) self.moved_picked = True self.queue_draw() def key_press_event(self, widget, event): r"""Handle key press.""" if self.is_zooming or self.is_rotating: return #print event.keyval if event.keyval == ord('r'): self.fit_to_window() self.regenerate_surface(reset=True) self.queue_draw() elif event.keyval == ord('s'): self.reset_layout() elif event.keyval == ord('a'): self.apply_transform() elif event.keyval == ord('p'): if self.picked == False: self.init_picked() else: self.picked = False self.selected.fa = False self.vertex_matrix = None self.queue_draw() elif event.keyval == ord('z'): if isinstance(self.picked, PropertyMap): u = GraphView(self.g, vfilt=self.picked) self.fit_to_window(g=u) self.regenerate_surface(reset=True) self.queue_draw() def key_release_event(self, widget, event): r"""Handle release event.""" if self.is_zooming or self.is_rotating: return if self.key_press_user_callback is not None: self.key_press_user_callback(self, self.g, event.keyval, self.picked, self.pos, self.vprops, self.eprops) if event.keyval == 65507: # Control_L if self.moved_picked: self.moved_picked = False self.regenerate_surface(reset=True, complete=True) self.queue_draw() # Touch gestures def zoom_begin(self, gesture, seq): self.is_zooming = True self.zoom_scale = 1. def zoom_end(self, gesture, seq): self.is_zooming = False self.regenerate_surface(reset=True) self.queue_draw() def scale_changed(self, gesture, scale): zoom = scale / self.zoom_scale self.zoom_scale = scale center = gesture.get_bounding_box_center()[1:] cpos = self.pos_from_device(center, surface=True) self.smatrix.scale(zoom, zoom) ncpos = self.pos_from_device(center, surface=True) self.smatrix.translate(ncpos[0] - cpos[0], ncpos[1] - cpos[1]) scale_ink(zoom, self.vprops, self.eprops) self.queue_draw() def rotate_begin(self, gesture, seq): self.is_rotating = True self.angle = None def rotate_end(self, gesture, seq): self.is_rotating = False def angle_changed(self, gesture, angle, angle_delta): if self.angle is None: self.angle = angle delta = angle - self.angle self.angle = angle center = gesture.get_bounding_box_center()[1:] m = cairo.Matrix() m.translate(center[0], center[1]) m.rotate(delta) m.translate(-center[0], -center[1]) self.smatrix = self.smatrix.multiply(m) self.queue_draw() def drag_gesture_begin(self, gesture, seq): self.drag_last = (0, 0) self.is_drag_gesture = True self.picked = False self.selected.fa = False def drag_gesture_end(self, gesture, seq): self.is_drag_gesture = False def drag_gesture_update(self, gesture, dx, dy): delta = (dx - self.drag_last[0], dy - self.drag_last[1]) self.drag_last = (dx, dy) m = cairo.Matrix() m.translate(delta[0], delta[1]) self.smatrix = self.smatrix.multiply(m) self.queue_draw()
[docs] class GraphWindow(Gtk.Window): def __init__(self, g, pos, geometry, vprops=None, eprops=None, vorder=None, eorder=None, nodesfirst=False, update_layout=False, **kwargs): r"""Interactive GTK+ window containing a :class:`~graph_tool.draw.GraphWidget`. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be drawn. pos : :class:`~graph_tool.VertexPropertyMap` Vector-valued vertex property map containing the x and y coordinates of the vertices. geometry : tuple Widget geometry. vprops : ``dict`` (optional, default: ``None``) Dictionary with the vertex properties. Individual properties may also be given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is the name of the property. eprops : ``dict`` (optional, default: ``None``) Dictionary with the edge properties. Individual properties may also be given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is the name of the property. vorder : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) If provided, defines the relative order in which the vertices are drawn. eorder : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) If provided, defines the relative order in which the edges are drawn. nodesfirst : ``bool`` (optional, default: ``False``) If ``True``, the vertices are drawn first, otherwise the edges are. update_layout : ``bool`` (optional, default: ``True``) If ``True``, the layout will be updated dynamically. **kwargs Any extra parameters are passed to :class:`~graph_tool.draw.GraphWidget` and :func:`~graph_tool.draw.cairo_draw`. """ Gtk.Window.__init__(self, title="graph-tool's interactive window™") icon = GdkPixbuf.Pixbuf.new_from_file('%s/graph-tool-logo.svg' % os.path.dirname(__file__)) self.set_icon(icon) self.set_default_size(geometry[0], geometry[1]) self.graph = GraphWidget(g, pos, vprops, eprops, vorder, eorder, nodesfirst, update_layout, **kwargs) self.add(self.graph) def __del__(self): self.graph.cleanup()
_window_list = []
[docs] def interactive_window(g, pos=None, vprops=None, eprops=None, vorder=None, eorder=None, nodesfirst=False, geometry=(500, 400), update_layout=True, sync=True, main=True, window=None, return_window=False, **kwargs): r"""Display an interactive GTK+ window containing the given graph. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be drawn. pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Vector-valued vertex property map containing the x and y coordinates of the vertices. If not given, it will be computed using :func:`sfdp_layout`. vprops : ``dict`` (optional, default: ``None``) Dictionary with the vertex properties. Individual properties may also be given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is the name of the property. eprops : ``dict`` (optional, default: ``None``) Dictionary with the edge properties. Individual properties may also be given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is the name of the property. vorder : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) If provided, defines the relative order in which the vertices are drawn. eorder : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) If provided, defines the relative order in which the edges are drawn. nodesfirst : ``bool`` (optional, default: ``False``) If ``True``, the vertices are drawn first, otherwise the edges are. geometry : tuple (optional, default: ``(500, 400)``) Window geometry. update_layout : ``bool`` (optional, default: ``True``) If ``True``, the layout will be updated dynamically. main : ``bool`` (optional, default: ``True``) If ``False``, the GTK+ main loop will not be called. window : :class:`~graph_tool.draw.GraphWindow` (optional, default: ``None``) If provided, specifies the window where the drawing will occur. Otherwise a new one will be created. return_window : ``bool`` (optional, default: ``False``) If ``True``, the GTK+ window will be returned. **kwargs Any extra parameters are passed to :class:`~graph_tool.draw.GraphWindow`, :class:`~graph_tool.draw.GraphWidget` and :func:`~graph_tool.draw.cairo_draw`. Returns ------- pos : :class:`~graph_tool.VertexPropertyMap` Vector vertex property map with the x and y coordinates of the vertices. selected : :class:`~graph_tool.VertexPropertyMap` (optional, only if ``output is None``) Boolean-valued vertex property map marking the vertices which were selected interactively. Notes ----- See documentation of :class:`~graph_tool.draw.GraphWidget` for key bindings information. """ if window is None: if pos is None: if update_layout: pos = random_layout(g, [1, 1]) else: pos = sfdp_layout(g) win = GraphWindow(g, pos, geometry, vprops, eprops, vorder, eorder, nodesfirst, update_layout, **kwargs) win.show_all() _window_list.append(win) else: win = window win.graph.update(pos, vprops, eprops, vorder, eorder, nodesfirst, **kwargs) win.graph.regenerate_surface(complete=True) win.graph.queue_draw() if main: def destroy_callback(*args, **kwargs): global _window_list for w in _window_list: w.destroy() Gtk.main_quit() win.connect("delete_event", destroy_callback) Gtk.main() else: while Gtk.events_pending(): Gtk.main_iteration() if return_window: return win return pos, win.graph.selected.copy()