#! /usr/bin/env python# -*- coding: utf-8 -*-## graph_tool -- a general graph manipulation python module## Copyright (C) 2006-2025 Tiago de Paula Peixoto <tiago@skewed.de>## This program is free software; you can redistribute it and/or modify it under# the terms of the GNU Lesser General Public License as published by the Free# Software Foundation; either version 3 of the License, or (at your option) any# later version.## This program is distributed in the hope that it will be useful, but WITHOUT# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more# details.## You should have received a copy of the GNU Lesser General Public License# along with this program. If not, see <http://www.gnu.org/licenses/>.importnumpyfrom.utilimport*from.blockmodelimport*from.nested_blockmodelimport*
[docs]defminimize_blockmodel_dl(g,state=BlockState,state_args={},multilevel_mcmc_args={}):r"""Fit the stochastic block model, by minimizing its description length using an agglomerative heuristic. Parameters ---------- g : :class:`~graph_tool.Graph` The graph. state : SBM-like state class (optional, default: :class:`~graph_tool.inference.BlockState`) Type of model that will be used. Must be derived from :class:`~graph_tool.inference.MultilevelMCMCState`. state_args : ``dict`` (optional, default: ``{}``) Arguments to be passed to appropriate state constructor (e.g. :class:`~graph_tool.inference.BlockState`) multilevel_mcmc_args : ``dict`` (optional, default: ``{}``) Arguments to be passed to :meth:`~graph_tool.inference.MultilevelMCMCState.multilevel_mcmc_sweep`. Returns ------- min_state : type given by parameter ``state`` State with minimum description length. Notes ----- This function is a convenience wrapper around :meth:`~graph_tool.inference.MultilevelMCMCState.multilevel_mcmc_sweep`. See [peixoto-efficient-2014]_ for details on the algorithm. This algorithm has a complexity of :math:`O(V \ln^2 V)`, where :math:`V` is the number of nodes in the network. Examples -------- .. testsetup:: mdl gt.seed_rng(43) np.random.seed(43) .. doctest:: mdl >>> g = gt.collection.data["polbooks"] >>> state = gt.minimize_blockmodel_dl(g) >>> state.draw(pos=g.vp["pos"], vertex_shape=state.get_blocks(), ... output="polbooks_blocks_mdl.svg") <...> .. figure:: polbooks_blocks_mdl.* :align: center Block partition of a political books network, which minimizes the description length of the network according to the degree-corrected stochastic blockmodel. .. testsetup:: mdl_overlap gt.seed_rng(42) np.random.seed(42) .. doctest:: mdl_overlap >>> g = gt.collection.data["polbooks"] >>> state = gt.minimize_blockmodel_dl(g, state=gt.OverlapBlockState) >>> state.draw(pos=g.vp["pos"], output="polbooks_overlap_blocks_mdl.svg") <...> .. figure:: polbooks_overlap_blocks_mdl.* :align: center Overlapping partition of a political books network, which minimizes the description length of the network according to the overlapping degree-corrected stochastic blockmodel. .. doctest:: mdl_pp >>> g = gt.collection.data["celegansneural"] >>> state = gt.minimize_blockmodel_dl(g, state=gt.PPBlockState) >>> state.draw(output="celegans_mdl_pp.pdf") <...> .. testcleanup:: mdl_pp conv_png("celegans_mdl_pp.pdf") .. figure:: celegans_mdl_pp.png :align: center :width: 60% Assortative partition of the *C. elegans* neural network, which minimizes the description length of the network according to the degree-corrected planted-partition blockmodel. References ---------- .. [peixoto-efficient-2014] Tiago P. Peixoto, "Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models", Phys. Rev. E 89, 012804 (2014), :doi:`10.1103/PhysRevE.89.012804`, :arxiv:`1310.4378`. """state=state(g,**state_args)args=dict(niter=1,beta=numpy.inf,force_accept=True)args.update(multilevel_mcmc_args)state.multilevel_mcmc_sweep(**args)returnstate
[docs]defminimize_nested_blockmodel_dl(g,init_bs=None,state=NestedBlockState,state_args={},multilevel_mcmc_args={}):r"""Fit the nested stochastic block model, by minimizing its description length using an agglomerative heuristic. Parameters ---------- g : :class:`~graph_tool.Graph` The graph. init_bs : iterable of iterable of ``int``s (optional, default: ``None``) Initial hierarchical partition. state : SBM state class (optional, default: :class:`~graph_tool.inference.NestedBlockState`) Type of model that will be used. state_args : ``dict`` (optional, default: ``{}``) Arguments to be passed to appropriate state constructor (e.g. :class:`~graph_tool.inference.BlockState`) multilevel_mcmc_args : ``dict`` (optional, default: ``{}``) Arguments to be passed to :meth:`~graph_tool.inference.MultilevelMCMCState.multilevel_mcmc_sweep`. Returns ------- min_state : type given by parameter ``state`` State with minimum description length. Notes ----- This function is a convenience wrapper around :meth:`~graph_tool.inference.NestedBlockState.multilevel_mcmc_sweep`. See [peixoto-hierarchical-2014]_ for details on the algorithm. This algorithm has a complexity of :math:`O(E \ln^2 V)`, where :math:`E` and :math:`V` are the number of edges and nodes in the network, respectively. Examples -------- .. testsetup:: nested_mdl gt.seed_rng(43) np.random.seed(43) .. doctest:: nested_mdl >>> g = gt.collection.data["power"] >>> state = gt.minimize_nested_blockmodel_dl(g) >>> state.draw(output="power_nested_mdl.pdf") (...) .. testcleanup:: nested_mdl conv_png("power_nested_mdl.pdf") .. figure:: power_nested_mdl.png :align: center :width: 60% Hierarchical Block partition of a power-grid network, which minimizes the description length of the network according to the nested (degree-corrected) stochastic blockmodel. .. doctest:: nested_mdl_overlap >>> g = gt.collection.data["celegansneural"] >>> state = gt.minimize_nested_blockmodel_dl(g, state_args=dict(overlap=True)) >>> state.draw(output="celegans_nested_mdl_overlap.pdf") (...) .. testcleanup:: nested_mdl_overlap conv_png("celegans_nested_mdl_overlap.pdf") .. figure:: celegans_nested_mdl_overlap.png :align: center :width: 60% Overlapping block partition of the *C. elegans* neural network, which minimizes the description length of the network according to the nested overlapping degree-corrected stochastic blockmodel. References ---------- .. [peixoto-hierarchical-2014] Tiago P. Peixoto, "Hierarchical block structures and high-resolution model selection in large networks ", Phys. Rev. X 4, 011047 (2014), :doi:`10.1103/PhysRevX.4.011047`, :arxiv:`1310.4377`. """state=state(g,bs=init_bs,**state_args)args=dict(niter=1,beta=numpy.inf)args.update(multilevel_mcmc_args)l=0whilel>=0:ret=state.multilevel_mcmc_sweep(ls=[l],**args)ifargs.get("verbose",False):print(l,ret,state)ifabs(ret[0])<1e-8:l-=1else:l=min((l+1,len(state.levels)-1))returnstate