IsingBlockStateBase#
- class graph_tool.inference.IsingBlockStateBase(s, g=None, has_zero=False, **kwargs)[source]#
Bases:
ABCBase state for network reconstruction based on the Ising model, using the stochastic block model as a prior.
This class is not supposed to be instantiated directly.
Instead one of its specialized subclasses must be used, which have the same signature:
IsingGlauberBlockState,PseudoIsingBlockState,CIsingGlauberBlockState,PseudoCIsingBlockState.- Parameters:
- s
ndarrayof shape(N,M)orlistofVertexPropertyMaporVertexPropertyMap Time series or independent samples used for reconstruction.
If the type is
ndarray, it should correspond to a(N,M)data matrix withMsamples for allNnodes.The values must correspond to Ising states:
-1or+1If the parameter
gis provided, this can be optionally a list of ofVertexPropertyMapobjects, where each entry in this list must be aVertexPropertyMapwith typevector<int>. If a single property map is given, then a single time series is assumed.If the parameter
tbelow is given, each property map value for a given node should contain only the states for the same points in time given by that parameter.- g
Graph(optional, default:None) Initial graph state. If not provided, an empty graph will be assumed.
- has_zerobool (optional, default:
False) If
True, the three-state “Ising” model with values{-1,0,1}is used.- **kwargs(optional)
Remaining parameters to be passed to
DynamicsBlockStateBase
- s
References
[ising-model][peixoto-network-2019]Tiago P. Peixoto, “Network reconstruction and community detection from dynamics”, Phys. Rev. Lett. 123 128301 (2019), DOI: 10.1103/PhysRevLett.123.128301 [sci-hub, @tor], arXiv: 1903.10833
[peixoto-network-2025]Tiago P. Peixoto, “Network reconstruction via the minimum description length principle”, Phys. Rev. X 15, 011065 (2025) DOI: 10.1103/PhysRevX.15.011065 [sci-hub, @tor], arXiv: 2405.01015
[peixoto-scalable-2024]Tiago P. Peixoto, “Scalable network reconstruction in subquadratic time”, arXiv: 2401.01404
[peixoto-uncertainty-2025]Tiago P. Peixoto, “Uncertainty quantification and posterior sampling for network reconstruction” arXiv: 2503.07736
Methods
get_dyn_state([s])Return an
IsingGlauberStateinstance corresponding to the inferred model, optionally with initial state given bys.- get_dyn_state(s=None)[source]#
Return an
IsingGlauberStateinstance corresponding to the inferred model, optionally with initial state given bys.