CIsingGlauberState#
- class graph_tool.dynamics.CIsingGlauberState(g, beta=1.0, w=1.0, h=0.0, s=None)[source]#
Bases:
DiscreteStateBaseGlauber dynamics of the continuous Ising model.
- Parameters:
- g
Graph Graph to be used for the dynamics
- beta
float(optional, default:1.) Inverse temperature.
- w
EdgePropertyMaporfloat(optional, default:1.) Edge interaction strength. If a scalar is provided, it’s used for all edges.
- h
VertexPropertyMaporfloat(optional, default:0.) Vertex local field. If a scalar is provided, it’s used for all vertices.
- s
VertexPropertyMap(optional, default:None) Initial global state. If not provided, a random state will be chosen.
- g
Notes
This implements the Glauber dynamics of the continuous Ising model [ising-model] on a network.
If a node \(i\) is updated at time \(t\), the transition to state \(s_i(t+1) \in [-1,+1]\) is done with probability density
\[P(s_i(t+1)|\boldsymbol s(t)) = \frac{\exp(\beta s_i(t+1)\sum_jA_{ij}w_{ij}s_j(t) + h_is_i(t+1))} {Z(\beta\sum_jA_{ij}w_{ij}s_j(t) + h_i)},\]with \(Z(x) = 2\sinh(x)/x\).
References
Examples
>>> g = gt.GraphView(gt.collection.data["polblogs"].copy(), directed=False) >>> gt.remove_parallel_edges(g) >>> g = gt.extract_largest_component(g, prune=True) >>> state = gt.CIsingGlauberState(g, beta=.2) >>> ret = state.iterate_async(niter=1000 * g.num_vertices()) >>> gt.graph_draw(g, g.vp.pos, vertex_fill_color=state.s, vcmap=cm.magma, ... output="glauber-cising.svg") <...>
State of a continuous Glauber Ising dynamics on a political blog network.#
Methods
copy()Return a copy of the state.
Returns list of "active" nodes, for states where this concept is used.
Returns the internal
VertexPropertyMapwith the current state.iterate_async([niter])Updates nodes asynchronously (i.e. single vertex chosen randomly), niter number of times.
iterate_sync([niter])Updates nodes synchronously (i.e. a full "sweep" of all nodes in parallel), niter number of times.
Resets list of "active" nodes, for states where this concept is used.
set_active(active)Sets the list of "active" nodes, for states where this concept is used.
- copy()#
Return a copy of the state.
- get_active()#
Returns list of “active” nodes, for states where this concept is used.
- get_state()#
Returns the internal
VertexPropertyMapwith the current state.
- iterate_async(niter=1)#
Updates nodes asynchronously (i.e. single vertex chosen randomly), niter number of times. This function returns the number of nodes that changed state.
- iterate_sync(niter=1)#
Updates nodes synchronously (i.e. a full “sweep” of all nodes in parallel), niter number of times. This function returns the number of nodes that changed state.
Parallel implementation.
If enabled during compilation, this algorithm will run in parallel using OpenMP. See the parallel algorithms section for information about how to control several aspects of parallelization.
- reset_active()#
Resets list of “active” nodes, for states where this concept is used.
- set_active(active)#
Sets the list of “active” nodes, for states where this concept is used.